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Preface

The Center for Computing Research (CCR) at Sandia National Laboratories organizes a
summer student program each summer, in coordination with the Computer Science Research
Institute (CSRI) and Cyber Engineering Research Institute (CERI).

CERI focuses on open, exploratory research in cyber security in partnership with
academia, industry, and government, and provides collaborators an accessible portal to
Sandia’s cybersecurity experts and facilities. Moreover, CERI provides an environment for
visionary, threat-informed research on national cyber challenges.

CSRI brings university faculty and students to Sandia National Laboratories for focused
collaborative research on DOE computer and computational science problems. CSRI pro-
vides a mechanism by which university researchers learn about problems in computer and
computational science at DOE Laboratories. Participants conduct leading–edge research,
interact with scientists and engineers at the laboratories, and help transfer the results of
their research to programs at the labs.

A key component of CCR programs over the last decade has been an active and pro-
ductive summer program in which students from around the country conduct internships at
Sandia. Each student is paired with a Sandia staff member who serves as technical advisor
and mentor. The goals of the summer program are to expose the students to research in the
mathematical and computer sciences at Sandia and to conduct a meaningful and impactful
summer research project with their Sandia mentor. Every effort is made to align summer
projects with the student’s research objectives and all work is coordinated with the ongoing
research activities of the Sandia mentor in alignment with Sandia technical thrusts.

Starting in 2014, CERI and CSRI combined their efforts to form the CCR Summer
Proceedings. Both CERI and CSRI encourage all summer participants and their mentors
to contribute a technical article to the CCR Summer Proceedings. In many cases, the CCR
Proceedings are the first opportunity that students have to write a research article. Not
only do these proceedings serve to document the research conducted during the summer
but, as part of the research training goals of Sandia, it is the intent that these articles serve
as precursors to or first drafts of articles that could be submitted to peer–reviewed journals.
As such, each article has been reviewed by a Sandia staff member knowledgeable in that
technical area with feedback provided to the authors. Several articles have or are in the
process of being submitted to peer–reviewed conferences or journals and we anticipate that
additional submissions will be forthcoming.

For the 2016 CCR Proceedings, research articles have been organized into the following
broad technical focus areas—computational mathematics, applications, and software and
high performance computing—which are well aligned with Sandia’s strategic thrusts in com-
puter and information sciences.

We would like to thank all participants who have contributed to the outstanding tech-
nical accomplishments of CSRI and CERI in 2016. The success of the program hinged on
the hard work of enthusiastic student collaborators and their dedicated Sandia technical
staff mentors. We would also like to thank those who reviewed articles for this proceedings;
their feedback is an important part of the research training process and has significantly
improved the quality of the reports.

An important educational component of the summer program is the CCR Summer
Seminar Series. We would like to thank the staff who spoke at the 2016 Series: Jon Berry
(org. 1464), Joe Bishop (1554), Frances Chance (1462), Pat Crossno (1461), Karen Devine
(1426), Kurt Ferreira (1423), Michael Frank (1425), Todd Griffith (6121), Jim Laros (1422),
Josh Robbins (1444), and Andy Salinger (1442).
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Finally, the CCR summer program would not be possible without the administrative
support of Ashley Avallone, Jonathan Compton, Steven Garcia, Denise LaPorte, Amy
Levan, Lorena Martinez, Celia Montoya, Sandra Portlock, Phyllis Rutka, Val Romero, and
Bernadette Watts.

James B. Carleton
Michael L. Parks

December 15, 2016
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Computational Mathematics

Computational mathematics is concerned with the design, analysis, and implementation of
algorithms to solve mathematical problems. Articles in this section describe the discretiza-
tion of partial differential equations and methods to solve equations, couple multiphysics
systems of equations, and quantify uncertainty.

Chen, Rajamanickam, Boman, and Darve introduce a parallel, hierarchical solver for
linear systems generated from the discretization of elliptic PDEs that is based on the LoRaSp
hierarchical solver, which uses block Cholesky factorization and low-rank elimination. The
parallel version makes use of the distance-2 connection property to partition the graph nodes
based on their distances from processor boundaries and coloring to coordinate computation
and communication for processor boundary nodes. They demonstrate that their algorithm
achieves nearly linear scaling in solve time and memory usage for 3-D problems and constant
iteration count when used as a preconditioner for Poisson problems, and good strong and
weak scaling on multiple processors.

Eller and Hoemmen derive scalable versions of the preconditioned conjugate gradient
method that use a three-term recurrence. By overlapping two iterations of matrix-vector
multiplies and preconditioner applications with a single non-blocking allreduce, they address
scalability problems associated with blocking allreduce. They give full derivations of their
scalable methods and compare them with two existing preconditioned conjugate gradient
algorithms. Their approach provides the potential to develop further pipelined, non-blocking
methods.

Fisher and Cyr construct a discretization for PDE constrained optimization problems
based on piecewise Hermite cubic orthogonal spline collocation in one and two dimensions.
They also prove the optimality of a preconditioner for the MINRES iteration and confirm it
computationally. They apply the method to the problems of distributed control of Poisson’s
equation and Burgers’ equation.

Lupo Pasini, Tuminaro, and Hu investigate an additive multigrid method adapted to a
domain decomposition setting with the aim of achieving convergence properties comparable
with multiplicative approaches while maintaining a computational cost comparable with
additive approaches. The approach has the potential to enhance concurrency and improve
performance on new and future architectures. They carefully construct the smoothed inter-
polation operator and use subdomain coloring to compress the prolongator to significantly
decrease communication cost and memory storage requirements. They demonstrate that
the approach can improve performance if the problem size and number of subdomains are
carefully chosen to achieve good load balancing.

Ohm and Tuminaro present a multigrid method for linear systems derived from PDEs
discretized using meshes that have both structured and unstructured regions that ensures
that the prolongation operator is consistent at the interfaces between structured and unstruc-
tured regions. They demonstrate significant reductions in the number of solver iterations
needed in cases where the mesh contains a region of high aspect ratio elements.

Shannon, Shadid, Bui-Thanh, and Lee construct a new high-order implicit hybridized
discontinuous Galerkin method for a linearized, resistive, incompressible magnetohydro-
dynamics system. This method is well-suited to this multiphysics, highly nonlinear PDE
system spanning a very large range of length and time scales. They prove the well-posedness
and stability of the scheme, and show numerical results for a Hartmann flow, a steady-state
problem, and a Rayleigh flow, a time-dependent problem. In both cases, they show optimal
convergence to the analytic solution for the velocity and magnetic field.



2 CCR Summer Proceedings 2016

Takhtaganov, Kouri, and Ridzal propose an algorithm for estimating finite coherent
risk functions of random quantities of interest that require expensive computation, such
as solving PDEs. They aim to reduce computation time by sampling the input parame-
ter space more efficiently than in standard Monte Carlo sampling by using risk-informed
sampling. They use both kernel density estimation and acceptance-rejection methods to
generate samples, and use both likelihood ratio and distribution matching approaches to
adjust the probabilities of generated samples. They demonstrate the proposed algorithm’s
effectiveness for problems with a small number of random inputs.

Vollmer, Chen, and Stracuzzi estimate signal arrival times for seismic sensors. Their
method provides a more refined estimate than the STA/LTA algorithm, which only produces
an onset search window, and it also gives an estimate of the uncertainty in the arrival time.
They use a Gaussian noise model, an auto-regressive time series model, and a Monte Carlo
sampling scheme, which are applied to produce a full probability density function for the
arrival time.

Walsh, Wildey, and Jakeman use a recently-developed consistent Bayesian approach
for solving stochastic inverse problems to guide the acquisition of experimental data and
create an optimal experimental design. They consider the case where experimental data is
not yet available, and the order in which the measurable quantities should be prioritized is
determined by maximizing the expected information gain. They also discuss causes of and
methods for avoiding infeasible data. They show numerical examples and compare their
consistent Bayesian approach to existing classical/statistical Bayesian approaches.

J.B. Carleton
M.L. Parks

December 15, 2016
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PARALLEL HIERARCHICAL SOLVER FOR ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

CHAO CHEN∗, SIVASANKARAN RAJAMANICKAM† , ERIK G. BOMAN ‡ , AND ERIC DARVE§

Abstract. Solving sparse linear systems from the discretization of elliptic partial differential equations
(PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve
general linear systems, but are usually slower and use much more memory than effective iterative solvers.
To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced
in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices
on distributed memory machines. On a single processor, the factorization time of our parallel solver scales
almost linearly with the problem size for three-dimensional problems, as opposed to the quadratic scalability
of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations,
when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has
significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large
problems much faster than many existing packages as demonstrated by the numerical experiments.

1. Introduction. Solving elliptic PDEs is an important building block in many engi-
neering applications. The common approach is to first discretize a PDE with local bases
such as finite difference or finite element methods, and then solve the subsequent sparse
linear system. Our goal is to develop a parallel algorithm that is robust for solving large
three-dimensional (3D) elliptic problems.

The earliest record for solving simultaneous linear equations is in an ancient mathe-
matical text The Nine Chapters on the Mathematical Art, a collection of math problems
composed in China more than 2000 years ago [27]. The solution in that book was what we
call Gaussian elimination today. While Gaussian elimination delivers exact solutions (up to
rounding errors) for general linear systems, its worst case time complexity is cubic, and it
uses much more memory to solve a sparse matrix than storing it because of fill-in, nonzero
entries introduced during the elimination process. To solve sparse linear systems more ef-
ficiently, several sparse direct solvers based on Gaussian elimination have been developed
[5, 7, 9, 20]. They organize computation efficiently (e.g., the multifrontal algorithm [10]),
and leverage different elimination orderings, such as the nested dissection ordering [11] and
the approximate minimum degree ordering [2]. For a survey of sparse direct solvers, refer to
[8]. However, those state-of-the-art sparse direct solvers still have quadratic-time complex-
ity in the factorization phase for solving three-dimensional elliptic PDEs. This quadratic
factorization cost is prohibitive for practical large problems.

A completely different approach for solving sparse matrices is to use iterative methods
[24]. Unlike sparse direct solvers, iterative methods are more memory efficient because they
treat a sparse matrix as a black-box operator and do not modify the matrix itself. Moreover,
the multigrid method [15, 29], an effective iterative method, is among the fastest solution
techniques for solving a class of elliptic PDEs. For example, the geometric multigrid method
has linear time complexity for solving Poisson’s equation on regular domains. However, the
convergence of iterative methods is not guaranteed for solving general elliptic PDEs, and
the iteration number may grow dramatically for matrices with large condition numbers.
Furthermore, iterative methods are typically not as efficient as sparse direct solvers for
solving multiple right-hand sides.

To reduce the memory usage and improve the time complexity of sparse direct solvers,

∗Stanford University, cchen10@stanford.edu,
†Sandia National Laboratories, srajama@sandia.gov,
‡Sandia National Laboratories, egboman@sandia.gov
§Stanford University, darve@stanford.edu
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several hierarchical solvers [1, 3, 17, 28] based on the H-matrix theory [14] have been devel-
oped, and some parallel algorithms have been introduced [12, 21, 23]. The key idea is data
sparsity, or approximation of dense matrix blocks by structured matrices. We investigate
parallelization of a closely-related hierarchical linear solver named LoRaSp [22]. LoRaSp is
based on H2-matrices, not H-matrices, and employs graph partitioning as opposed to the
nested dissection ordering of traditional hierarchical solvers. Similar to traditional hierar-
chical solvers, LoRaSp exhibits almost linear time complexity and is more memory efficient
than sparse direct solvers. We propose a new parallelization approach to LoRaSp that is
based on data-decomposition, and as we will show that an important sparsity property can
be leveraged with the parallel algorithm.

There are three main features of our parallel algorithm as follows. First, only local
communication is needed. In other words, every processor only exchanges information with
its neighbors. Second, the communication volume is small compared to the amount of
computation. It will be shown later that the communication-to-computation ratio is roughly
the surface-to-volume ratio of a cube. Third, the bulk of work in our parallel algorithm lies
in dense linear algebra operations. Compared to iterative methods, our algorithm is more
friendly to modern machine architectures and provides an opportunity for using modern
many core processors such as the graphics processing unit (GPU) and Intel Xeon Phi [18].

The rest of this paper is organized as follows. Section 2 reviews the sequential algorithm
in [22] as the foundation for the parallel algorithm. Section 3 discusses the details of our
parallel algorithm. Section 4 shows numerical results and Section 5 summarizes this report.

2. Sequential hierarchical solver. We assume the sparse linear system to be solved
is symmetric positive definite (SPD) in this paper. An SPD matrix can be represented by
a graph, where each vertex represents a row/column and edges between vertices represent
matrix nonzeros. LoRaSp is based on block Cholesky factorization of SPD matrices, so we
present block Cholesky factorization to introduce notations and set the stage for LoRaSp.

2.1. Block Choleksy factorization. For an SPD linear system A, define V as the
set of all unknowns. Given a clustering of the unknowns V = ∪ni=1πi, block Cholesky
factorization is equivalent to applying a sequence of linear operators Gi, (i = 1, 2, . . . n) on
A, where Gi eliminates cluster πi. A good clustering of the unknowns can be obtained via
partitioning the corresponding graph of A, which can be done using any of the existing
graph partitioning packages - METIS [19], Scotch [6] and Zoltan [4] to name a few. A
good clustering has well-balanced numbers of unknowns in all clusters, and the number of
edges between different clusters is small. For example, Figure 2.1(Left) 1 shows a 32-parts
clustering of the vertices in a two-dimensional unstructured grid using Scotch, where every
cluster is color-coded.

The nonzero pattern of an SPD sparse matrix during Cholesky factorization can be
perfectly depicted by the graph notation [8], and the basic rule is that after an unknown
is eliminated, its neighbors form a clique, representing fill-in in the original sparse matrix.
Similarly, the nonzero pattern of a blocked sparse matrix2 during block Cholesky factor-
ization can be described using the same rule but on the quotient graph. With a sparse
matrix partitioning, each node in the quotient graph stands for a cluster of vertices in the
original graph and an edge exists between two nodes in the quotient graph if two clusters
are adjacent in the partitioned graph. From now on, we always talk about the quotient
graph corresponding to a matrix partitioning. From the perspective of the quotient graph,
block Cholesky factorization traverses the quotient graph, and after a node is visited, its

1Figure taken from [22] with permission.
2A block is a nonzero block if it has at least one nonzero entry.
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Fig. 2.1: (Left) A clustering of the vertices in a two-dimensional unstructured grid. All
vertices have been partitioned into 32 clusters using Scotch, where every part is color-
coded. The edges are not shown here for visualization purpose. (Right) The quotient graph
corresponding to the partitioning of all vertices. Every node in the quotient graph stands
for a cluster of vertices, and edges in the quotient graph represents the adjacency of two
clusters. (Figure taken from [30] with permission.)

neighbors form a clique.

2.2. Low-rank elimination. As a preliminary to understand LoRaSp, we first intro-
duce low-rank elimination (LRE). Suppose in a block SPD linear system, Asn is full-rank
and Asw = U V T is low-rank

Ax =

Ass Asn Asw
ATsn Ann Anw
ATsw ATnw Aww

xsxn
xw

 =

 Ass Asn U V T

ATsn Ann Anw
V UT ATnw Aww

xsxn
xw

 =

fsfn
fw

 .

With auxiliary variables rs = UTxs, bs = V Txw, we define the extended sparsification
operator Esw that maps A to a larger sparse matrix, and the original linear system becomes

Esw(A) x̃ =


Ass U Asn
UT −I
ATsn Ann Anw

ATnw Aww V
−I V T



xs
bs
xn
xw
rs

 =


fs
0
fn
fw
0

 ,

where I is the identity matrix of appropriate size.
Instead of eliminating xs from A directly, we can eliminate xs and bs from Esw(A) and

obtain

GxsEsw(A) =


I

UTA−1
ss U UTA−1

ss Asn −I
UA−1

ss A
T
sn Ann Anw

ATnw Aww V
−I V T

 ,

Wsw(A) ≡GbsGxsEsw(A) =


I

I
Snn Anw Snrs
ATnw Aww V
STnrs V T Srsrs

 ,
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where I’s are identity matrices of appropriate sizes, Srsrs = −(UTA−1
ss U)−1, Snrs = UA−1

ss A
T
sn·

(UTA−1
ss U)−1 and Snn = Ann − UA−1

ss A
T
sn · (UTA−1

ss U)−1 · UTA−1
ss Asn are the Schur com-

plements. Suppose xs, xw have sizes Ns, Nw and bs, rs have sizes r � Ns, Nw. Dropping
lower-order term involving r, the saving is O(Ns ·N2

w) − O(Nw ·N2
s ), where the first term

corresponds to forming the Schur complement Sww = Aww −ATswA−1
ss Asw in A and second

term corresponds to computing the low-rank factorization Asw = U V T with the singular
value decomposition (SVD). When Nw � Ns, the saving will be significant.

With the graph notation, low-rank elimination is shown in Figure 2.2, where Figure
2.2(a) shows the graph of A; Figure 2.2(b) shows the graph of Esw(A); and Figure 2.2(c)
shows the graph of Wsw(A).

xs xn xw 

(a) Graph of A

xs xn xw 

bs 

rs 

(b) Graph of Es(A)

xn xw 

rs 

(c) Graph of Ws(A)

Fig. 2.2: Graph notation for low-rank elimination. (a) The original matrix A is a 3 × 3
block SPD matrix, so its graph has three clusters where all nodes are connected. The edge
between Xs and Xw corresponds to a low-rank matrix block. (b) The extended sparsification
operator Es is applied on A, which introduces a black node bs and a red node rs into the
graph, and the connection between Xs and Xw now go through bs and rs. (c) Node Xs and
node bs have been eliminated, introducing a new edge between rs and Xn.

In general, a block SPD matrix may have multiple low-rank sub-blocks and multiple
full-rank sub-blocks corresponding to a cluster of vertices. What we do then is compress all
low-rank sub-blocks together, forming the extended matrix and eliminating corresponding
nodes in the graph. This sub-routine is used in LoRaSp, and it is summarized in Algorithm
2.1.

2.3. Hierarchical solver algorithm. Block Cholesky factorization is usually not ef-
ficient for sparse SPD matrices because of potentially too much fill-in. An important ob-
servation in [22] is that some fill-in is data sparse, i.e., some matrix off-diagonal blocks are
low-rank. These low-rank blocks are named well-separated interactions as defined in [22].
To control the amount of fill-in, LoRaSp uses LRE to maintain sparsity. To be more spe-
cific, before applying the operator Gs to eliminate a cluster πs, LoRaSp classifies all nonzero
blocks into near/full-rank interactions and well-separated/low-rank interactions, and then
uses LRE. From the perspective of the quotient graph, LRE redirects well-separated edges
through the parent red node. With a parent red node, much less fill-in will be introduced
after cluster πs is eliminated.

After all nodes in the quotient graph are eliminated in LoRaSp, what remains is a graph
consisting of all parent red nodes, where every node represents a much smaller cluster than
in the original quotient graph. Then LoRaSp uses a coarsening step to merge all pairs of
red nodes together and repeats the same algorithm on the coarse graph. This recursive
algorithm is summarized in Algorithm 2.2. For a detailed explanation of the algorithm and
analysis of the hierarchical solver, we refer to [22].
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Algorithm 2.1 Low-rank elimination sub-routine
function LRE(block SPD matrix A, vertex clustering Π = ∪ni=1πi, index s)

find all low-rank matrix blocks Aπs,πt1 , Aπs,πt2 , . . . , Aπs,πtn
compute the low-rank approximation of the concatenated matrix

U V T = [Aπs,πt1 , Aπs,πt2 , . . . , Aπs,πtn ]

let w = ∪ni=1ti
return Ws,w(A)

function LRE(block SPD matrix A, vertex clustering Π = ∪ni=1πi)
for i = 1, 2, . . . , n do

A← LRE(A, Π, i)
return A

function LRE(block SPD matrix A, vertex clustering Π = ∪ni=1πi, vertex clustering
subset ∪mi=1πsi)

for i = 1, 2, . . . ,m do
A← LRE(A, Π, si)

return A

Algorithm 2.2 Hierarchical solver algorithm
1: Partition the graph of A and get vertex clusters Π = ∪ni=1πi
2: LRE(A, Π)
3: create the coarse graph Ac from A and recurse on Ac

3. Parallel hierarchical solver. As we see in Section 2, LoRaSp repeatedly carries
out two operations G and E on a sparse matrix. With the graph notation, the first operation
G introduces new edges, and the other operation E creates a parent red node and redirects
all well-separated edges through that node. With these two operators, LoRaSp has an
important sparsity structure that we call distance-2 connection property. It means that in
the graph, no newly introduced edge will exist between two nodes farther than distance
two from each other, where distance is measured as the length of the shortest path in the
original quotient graph. This property is the key to our parallel algorithm, and we give a
sketch of the proof in the appendix.

3.1. Parallel algorithm. To present the parallel algorithm, we first introduce some
definitions and notations. We focus on the quotient graph G = (V,E) corresponding to
a given vertex partitioning V = ∪ni=1πi of the SPD matrix A. The distance between two
nodes in the quotient graph is defined as the length of the shortest path between them. We
define the distance-2 neighbors N2(·) of a node S as all neighbors of S and the neighbors of
its neighbors, i.e.,

N2(S) = N (S) ∪N (N (S)),

where N (·) is the set of all neighbors. For our parallel algorithm, we always assume a
processor P owns a piece of the whole quotient graph GP such that G = ∪PGP and the
sub-graph owned by different processors do not overlap. We define the distance between a
node S in the quotient graph and a processor P as the minimum distance between S and
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any node in GP . We also define the distance-2 neighbors N2(·) of a processor P as processors
(excluding P itself) owning at least one distance-2 neighbor of any node in GP , i.e.,

N2(P ) = {Q | ∃S ∈ GP : GQ ∩N2(S) 6= ∅}/{P}.

For every processor, we define d1 nodes as the boundary nodes, i.e., they are distance
one from at least one other processor. With the same logic, we define d2 nodes as those that
are distance two from at least one other processor. The rest of nodes on every processor are
defined as d3 nodes, whose distance to any other processor is greater or equal to three. A
two-processor example showing d1 nodes, d2 nodes and d3 nodes is given in Figure 3.1.

Fig. 3.1: A two-processor example showing d1 nodes, d2 nodes and d3 nodes on each
processor. The structured grid represents the quotient graph, which is evenly divided into
two pieces owned by two processors P0 and P1 respectively. Boundary nodes on each
processor are defined as d1 nodes, and d2 nodes are one layer away from the other processor.
The rest of the interior nodes on every processor are defined as d3 nodes, which is not shown
explicitly.

With the definition of d1 nodes, d2 nodes and d3 nodes, we point out three important
observations as follows. First, d1 nodes are coupled between different processors obviously.
So d1 nodes should be processed in some order to avoid conflicts between different proces-
sors, and communication is needed for updating edges across different processors. Second,
d2 nodes are partially coupled between different processors. A d2 node on one processor
may be connected to a d1 node on another processor because of fill-in. But a d2 node on one
processor will never connect to a d2 node on a different processor thanks to the distance-2
connection property of LoRaSp. So d2 nodes can be processed in parallel, and commu-
nication is needed for updating across edges. Third, d3 nodes are completely decoupled
between different processors because of the distance-2 connection property, and hence they
can be processed by all processors in parallel. With these observations, we have the parallel
algorithm shown in Algorithm 3.13. The algorithm for d1 nodes is shown in Algorithm 3.2.

Before diving into the details of a good ordering for d1 elimination, two advantages of
our parallel algorithm are already clear from Algorithm 3.1. One is that every processor
exchanges information only with its distance-2 neighbors. So communication in our parallel
algorithm is always local. The other advantage is that the amount of communication is small
compared to the amount of computation. The reason is that the communication volume
is roughly proportional to the number of d1 nodes, while the amount of computation is
proportional to the total number of d1 nodes, d2 nodes and d3 nodes. For 3D problems,

3all parallel pseudocode is written in single program multiple data (SPMD) style.



C. Chen, S. Rajamanickam, E. G. Boman, and E. Darve 9

Algorithm 3.1 Parallel algorithm
Require: my processor id P , local sub-graph GP (local vertex clusters ΠP ), and local

matrix AP that has a subset of rows and columns corresponding to ΠP in the original
matrix A.

1: Classify all clusters ΠP into d1 clusters, d2 clusters and d3 clusters.
2: process d1 clusters with Algorithm 3.2
3: LRE(AP , ΠP , d2 clusters)
4: communicate with N2(P ) processors and update blocks in AP corresponding to across

edges in GP
5: LRE(AP , ΠP , d3 clusters)
6: create the coarse graph APc from AP and recurse on APc

this communication-to-computation ratio is approximately the surface-to-volume ratio of a
cube, i.e., the amount of communication is one order less than computation in our parallel
algorithm.

Another important observation useful in practice is that the communication for d1 nodes
and the computation for d3 nodes are independent. Therefore, communication for d1 nodes
can be overlapped with the computation for d3 nodes. Specifically, to hide the latency of
sending messages for d1 nodes, every processor can work on its d3 nodes in the mean time
while waiting for messages from other processors.

3.2. Coloring of d1 nodes. To coordinate all processors in eliminating d1 nodes in
parallel, we assign colors to all d1 nodes so that all processors can process d1 nodes with
the same color at a time. To avoid any conflict, every pair of d1 nodes within distance two
must have different colors if they belong to different processors, i.e.,

∀S, T ∈ V s.t. T ∈ N2(S) and S, T belong to different processors
Color(S) 6= Color(T )

(3.1)

Given such a coloring result, we have the algorithm for processing d1 nodes as shown in
Algorithm 3.2.

Algorithm 3.2 Process d1 nodes
Require: Coloring of all d1 nodes such that Condition 3.1 is satisfied, and inputs from

Algorithm 3.1
1: for all colors i do
2: LRE(AP , ΠP , d1 clusters with color i)
3: communicate with N2(P ) processors and update blocks in AP corresponding to

across edges in GP

Next we discuss two different coloring schemes. The first one, which we call processor
coloring, is to assign colors to all processors such that every pair of distance-2 neighbors
have different colors. Another perspective to view processor coloring is that it assigns one
color to all of a processor’s d1 nodes that is not the same color used for the d1 nodes of
any distance-2 neighbor. This may lead to load imbalance because at every iteration in
Algorithm 3.2 only the processors with a specific color are busy and others are idle. For
a structured two-dimensional (2D) grid, the number of colors needed is 32 = 9. For a
structured three-dimensional (3D) grid, the number of colors needed is 33 = 27. Therefore,
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at every iteration, only a portion of 1/9 and 1/27 of all processors are working for in 2D
and 3D respectively.

The other coloring scheme that extracts more parallelism is to color all d1 nodes directly.
We call this scheme node coloring. Ideally, the node coloring scheme leads to a well-balanced
number of d1 nodes with every color on all processors. If so, the load is perfectly balanced
on all processors. For a structured 2D grid, the number of colors needed is 4 when four
corners of a square have different colors. For a structured 3D grid, the number of colors
needed is 8 when eight corners of a cube have different colors. Therefore, the node coloring
scheme can lead to a smaller number of colors and much better load-balancing.

To compare processor coloring and node coloring, we give a simple example here. In
Figure 3.2, the graph is divided into four pieces and owned by four processors. With
processor coloring, all processors have different colors, and all d1 nodes on one processor
have the same color as shown in Figure 3.2(a). Therefore, at every iteration in Algorithm
3.2, only one processor is working and the other three are idle. In contrast, every processor
has all four different colors with node coloring as shown in Figure 3.2(b), so all processors
have work to do at every iteration.

(a) processor coloring (b) node coloring

Fig. 3.2: Different coloring schemes for a four-processors example: processor coloring (left)
assigns the same color to all d1 nodes on a processor, while node coloring (right) assigns the
same color to d1 nodes on all four processors. As a result, only one processor is working at
every iteration with the processor coloring scheme, whereas four processors are working at
every iteration with the node coloring scheme.

4. Numerical results. We first present sequential results on linear factorization time
and almost constant iteration numbers. Test matrices are generated from Poisson problems
on a cube Ω = (0, 1)3 with random Dirichlet boundary conditions, and the discretization
scheme uses a second order finite difference stencil. All experiments are done on the Vesper
machine (vesper@sandia.gov) at Sandia, which has 32 cores and about 132 gigabytes (GB)
of memory.

We call our parallel solver ParH2 (Parallel solver using H2-matrices), which is imple-
mented with the message passing interface (MPI) [13]. For sequential results, we run ParH2
with one MPI rank.

4.1. Sequential results. In the first experiment, we want compare the performance
of ParH2 with LoRaSp by fixing the low-rank truncation error ε and only keep the singular
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values satisfying the following criteria for low-rank approximations

σi/σ0 ≥ ε,

where σ0 is the largest singular value. The factorization times for LoRaSp and ParH2 are
plotted in Figure 4.1. As shown in the figure, timing results for LoRaSp and ParH2 with the
same truncation error are very close to each other, as are the other results such as memory
footprint and iteration numbers. Therefore, we only present results from ParH2 hereafter.
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Fig. 4.1: Factorization time of ParH2 and LoRaSp for different truncation errors: ε =
10−1, 10−2, 10−3. Timing results for LoRaSp and ParH2 almost overlap with each other.
The factorization time with fixed ε grows towards quadratic when ε decreases.

Figure 4.1 also shows that the factorization time is nearly linear for ε = 10−1, but it
scales closer and closer to quadratic when ε = 10−2 and ε = 10−3. When ε is fixed, the rank
of well-separated interactions grows at coarser and coarser graphs, so the factorization time
may grow faster than linearly when ε is small. This is shown in [22].

Because of using low-rank approximations in the algorithm, a single solve with ParH2
is not as accurate as standard sparse direct solvers, so we use it as a preconditioner for the
conjugate gradient method (CG) [16] and show the iteration numbers in Table 4.1.

Table 4.1: Truncation error/ε, matrix size and iteration number (∼out of memory)

ε\ matrix 16k 32k 65k 131k 262k 524k 1m 2m
10−1 8 9 11 14 16 20 23 28
10−2 3 3 3 4 4 4 4 5
10−3 1 2 2 2 2 2 ∼ ∼

Although setting ε = 10−1 leads to linear factorization time, the corresponding iteration
number grows as shown in Table 4.1. For ε = 10−2 and ε = 10−3, the iteration number is
almost constant but the factorization time grows faster than linearly. Therefore, fixing ε is
not a good criteria for ParH2.

To have almost constant number of iterations, ε = 10−1 is apparently not accurate
enough, so we focus on adding an extra constraint along with ε = 10−3 to get nearly linear
time factorization and almost constant iteration numbers. The factorization time for fixing
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ε = 10−3 does not scale linearly because of increasing low-rank approximation ranks at
coarser graphs, so in the next experiment, we force an upper bound B on the rank and only
keep at most B singular values in all low-rank approximations. This will definitely force the
factorization time to scale linearly as proved in [22].

As shown in Figure 4.2, the factorization time is linear for different rank upper bounds:
B = 8, 16, 32. When the rank is bounded, the approximation at coarser graphs will be less
and less accurate, which in turn leads to growing number of iterations, as shown in the first
part of Table 4.2. To preserve linear scalability of factorization time and almost constant
iteration number, we allow the upper bound to grow by a small factor of 1.1 at every level
(grow by 10% at every level). Figure 4.2 shows that the factorization time increases by
roughly a constant factor, and the second part of Table 4.2 shows that the iteration number
is almost constant for B = 16, 32.
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Fig. 4.2: (Red) linear factorization time for different bounds on the rank, and (Blue) linear
factorization time for growing bounds by a factor of 1.1 at coarser graphs. Three different
upper bounds are shown here: B = 8, 16, 32.

Table 4.2: Rank, matrix size and iteration number. The first half corresponds to fixed upper
bounds of rank and the second half corresponds to growing upper bounds at 10%. (*growing
upper bound; ∼out of memory)

rank \ matrix 16k 32k 65k 131k 262k 524k 1m 2m
8 15 13 15 22 21 26 32 38
16 10 8 9 15 12 15 17 21
32 5 4 4 9 6 8 9 10
8* 13 10 12 18 15 19 22 26
16* 7 5 5 9 6 8 8 10
32* 2 2 3 4 4 4 4 ∼

4.2. Parallel results. Here we present numerical results by running ParH2 on more
than one processor with ε = 10−3 and B = 16 or 32. All parallel runs have almost the same
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(±1) iteration numbers as corresponding sequential runs, but the factorization time, solve
time and memory footprint have been distributed to different processes. We focus on the
scalability of the factorization time in the following discussion.

First we compare ParH2 to other existing state-of-the-art sparse direct solvers, including
SuperLU [9] and PARDISO-MKL [20, 25, 26]. Figure 4.3 shows timing results of SuperLU,
PARDISO-MKL and the parallel factorization time of ParH2 (B = 16). In the figure,
SuperLU and PARDISO-MKL clearly exhibit quadratic time complexity, whereas ParH2 has
linear time complexity. The line of ParH2 with 1 MPI rank crosses the line of PARDISO-
MKL at matrix size 262k, whereas the line of ParH2 with 4 MPI rank crosses the line
of PARDISO-MKL at matrix size 65k. Some lines do not extend to all matrix sizes either
because the running time is too long (SuperLU) or because memory requirements exhausted
the available resources (ParH2 with 32 MPI ranks). Details of ParH2 parallel efficiency are
studied in the a later experiment.
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Fig. 4.3: Timing results for SuperLU, PARDISO-MKL and ParH2 with different MPI ranks
(1, 4, 16 and 32). ParH2 is configured with ε = 10−3 and B = 16.

Before showing details of parallel efficiency, we present an experiment showing the ef-
fectiveness of overlapping d1-communication and d3-computation. Figure 4.4 illustrates a
speed-up of about two times on 32 processors with the overlapping.

The last experiment shows the parallel efficiency of ParH2 in Figure 4.5 with config-
uration ε = 10−3 and B = 8. Figure 4.5(a) shows the efficiency corresponding to strong
scaling, i.e., the matrix size is fixed while the number of processors increases. The speedup
and parallel strong efficiency are computed with the following standard formulas:

speedup =
time(1, N)

time(np,N)
s-efficiency =

speedup
np

where N is the problem size, np is the number of processors, time(np,N) corresponds to the
parallel running time with np processors for solving a matrix of size N . From Figure 4.5(a),
the efficiency is around 80%, i.e., the speedup is about 25 at 32 processors for four million
unknowns. Figure 4.5(b) shows the efficiency corresponding to weak scaling, i.e., the matrix
size increases proportionally to the number of processors. The parallel weak efficiency is
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Fig. 4.4: Timing differences between non-overlapping and overlapping of d1-communication
and d3-computation. The speedup is about two times on 32 processors (ε = 10−3 and
B = 32).

computed with the following formula:

w-efficiency =
time(1, N)

time(np,N × np)
.

From Figure 4.5(b), the efficiency is around 75% at 32 processors for 131 thousand unknowns
per processor.
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(a) Strong scaling: the matrix size is fixed and
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Fig. 4.5: Parallel efficiency of ParH2 with configuration ε = 10−3 and B = 8. The results
for B = 16, 32 are very similar.

5. Conclusions. The pursuit to solve larger and larger matrices will never end. Here,
we have shown the attractive features of our parallel algorithm: the factorization time, the
solve time and the memory usage all scale nearly linearly. When our solver is used as a
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preconditioner for an iterative solver, the iteration number stays almost constant. This
nearly optimal scaling leads to faster running times on large matrices which beats many
existing sparse direct solvers.

To solve really large problems that cannot be stored on a single machine, distributed
memory parallel computing has to be used. Our solver achieves good speed-ups on more
than one processor. The parallel algorithm requires exchanging only boundary information
between neighbor processors, which is an order of magnitude less than the amount of com-
putation to be done. It uses a lot of dense linear algebra, giving opportunity for parallelism
using modern many core architectures.

Appendix: proof of distance-2 property. We use mathematical induction. Define
the distance between two nodes as the length of the shortest path in the original graph. At
the leaf level, initially edges only exist between nodes of distance-1 apart obviously. Suppose
a new edge E′ is introduced between two nodes of distance-3 during the elimination process.
There must be another edge E between two nodes of distance-2 before E′. However, this
is impossible because such an edge E will be compressed before the elimination happens.
By induction, suppose distance-2 connection property holds at one level, and we want to
show it also holds when the next level is constructed. Suppose an edge exists between two
nodes of distance-3 when the next level is formed. Consider the children of those two nodes.
There must be two of them of distance-3 at the previous level - a contradiction. Therefore
the property holds at all levels.
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SCALABLE THREE-TERM RECURRENCE PRECONDITIONED
CONJUGATE GRADIENT METHODS

PAUL R. ELLER § AND MARK HOEMMEN¶

Abstract. The preconditioned conjugate gradient method (PCG) is a popular method for solving linear
systems at scale. PCG requires frequent blocking allreduce collective operations that can limit performance
at scale. We investigate PCG variations designed to reduce communication costs by decreasing the number
of allreduces and by overlapping communication with computation using a non-blocking allreduce. This
paper investigates three-term recurrence variations of PCG. This three-term recurrence variation allows us to
develop PIPE2CG, a PCG method that overlaps two iterations of matrix-vector multiplies and preconditioner
applications with a single non-blocking allreduce. PIPE2CG provides a more scalable method that performs
better as communication costs increase and work per core decreases. This approach provides the potential
to develop further pipelined non-blocking PCG methods.

1. Introduction. To achieve the best performance on extreme-scale systems, we must
develop more scalable methods. Blocking collective operations are a barrier to scalability
due to their increase in cost when scaling to higher core counts and due to requiring syn-
chronization of all cores. Synchronization forces all processes to wait for the slowest process,
which becomes particularly harmful on supercomputers due to the many sources of noise
that cause performance variation across cores. Methods that require frequent collective op-
erations and synchronization may run efficiently enough on some modern systems, but they
will struggle to maintain good performance as supercomputers continue to grow.

The preconditioned conjugate gradient method (PCG) [4, 6] is a popular iterative
method for solving sparse symmetric positive definite (SPD) systems of linear equations,
however the allreduce used once or twice per iteration for many of the standard formulations
of PCG is a barrier to scalability. Therefore in order to obtain improved performance at
scale, we need to minimize the allreduce cost and avoid synchronization to produce methods
capable of scaling effectively on large-scale systems.

We can rearrange PCG to reduce communication latency by combining multiple allre-
duces into a single allreduce and to overlap communication and computation using non-
blocking allreduces. Using the standard two-term recurrence PCG method to derive a PCG
method that overlaps multiple iterations of PCG with a single non-blocking allreduce seems
like a promising approach to produce more scalable methods.

Unfortunately this approach requires an additional matrix-vector multiply and precon-
ditioner application each iteration to produce an accurate solution. Using suggestions from
[5], we instead use a three-term recurrence variation of PCG (PCG3) based on the algorithm
from [6]. This method avoids dependencies that limit our ability to rearrange the standard
formulation, allowing us to develop a two-step pipelined, non-blocking PCG method, and
providing the potential to develop further pipelined methods.

We previously investigated scalable two-term recurrence variations of PCG and the scal-
able three-term recurrence PIPE2CG method in [1]. That paper presented some methods,
discussed implementation details, and showed detailed performance results and analysis, but
had limited space to show and discuss the derivation of PIPE2CG. This paper addresses this
issue by providing a more detailed description of how to derive PIPE2CG, including pre-
senting a three-term recurrence variation of PIPECG as an intermediate step when deriving
PIPE2CG.

§University of Illinois at Urbana-Champaign Department of Computer Science, eller3@illinois.edu
¶Sandia National Laboratories, mhoemme@sandia.gov
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Algorithm 2.1 Preconditioned Conjugate Gradient method
Input: A: n× n SPD matrix, x0: initial guess, b: right-hand side, M : prec
Output: xj : approximate solution
r0 ← b−Ax0 z0 ←Mr0

γ0 ← (z0, r0) norm0 ←
√

(z0, z0) . 2 Merged Operations
Allreduce on γ0, norm0 . Blocking Allreduce

for j=1,2,...,until convergence do
if j > 1 then βj ← γj−1/γj−2

else βj ← 0.0
pj ← zj−1 + βpj−1

wj ← Apj

δj ← (pj , wj)
Allreduce on δj . Blocking Allreduce

αj ← γj−1/δj
xj ← xj−1 + αjpj
rj ← rj−1 − αjwj
zj ←Mrj

γj ← (zj , rj) normj ←
√

(zj , zj) . 2 Merged Operations
Allreduce on γj , normj . Blocking Allreduce

2. PCG. The preconditioned conjugate gradient method solves a symmetric positive
definite (SPD) linear system Ax = b where A is an SPD n × n matrix, x is an n-vector
to solve for, and b is a right hand side n-vector. This method is used iteratively and often
converges in far fewer than n iterations. In practice we need a preconditioner to acclerate
convergence by solving the system M−1Ax = M−1b, where M is an n× n matrix.

Algorithm 3.1 Three-term Recurrence PCG method
Input: A: n× n SPD matrix, x0: initial guess, b: right-hand side, M : prec
Output: xj : approximate solution
r0 ← b−Ax0 z0 ←Mr0 w0 ← Az0

δ0 ← (z0, w0) β0 ← (z0, r0) norm0 ←
√

(z0, z0) . 3 Merged Operations
Allreduce on δ0, β0, norm0 . Blocking Allreduce

for j=1,2,...,until convergence do
γj ← βj−1/δj−1

if j > 1 then ρj ← 1/(1− (γj/γj−1)(βj−1/βj−2)(1/ρj−1)
else ρj ← 1
xj ← ρj(xj−1 + γjzj−1) + (1− ρj)xj−2

rj ← ρj(rj−1 − γjwj−1) + (1− ρj)rj−2

zj ←Mrj wj ← Azj

δj ← (zj , wj) βj ← (zj , rj) normj ←
√

(zj , zj) . 3 Merged Operations
Allreduce on δj , βj , normj . Blocking Allreduce
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Method Vectors VecOps Allreduces Overlap Init Costs
PCG 6 6 2 Blocking None 1 PC
PCG3 9 7 1 Blocking None 1 PC, 1 Matvec
PIPECG3 15 11 1 Non-blocking Matvec, PC 2 PC, 2 Matvec
PIPE2CG* 27 24 1 Non-blocking 2 Matvec, 2 PC 3 PC, 3 Matvec

Table 3.1: Differences between each PCG method. Assumes cost of three-term vector op-
eration is double cost of two-term vector operation. *Note that PIPE2CG computes two
iterations of PCG each iteration.

3. Three-term Recurrence PCG. Algorithm 2.1 is the most commonly used al-
gorithm for PCG; however, there are some other variations that are equivalent in exact
arithmetic. The three-term recurrence variation of PCG [6] uses a three-term recurrence of
the form rj ← ρj(rj−1 − γjwj−1) + (1 − ρj)rj−2 instead of the two-term recurrence of the
form rj ← rj−1−αjwj . Using the other properties of the conjugate gradient method allows
us to produce Algorithm 3.1.

The standard PCG algorithm has a cyclic dependency between pj and rj , which we
are able to avoid with the three-term recurrence variation that directly computes xj and rj
without the need for pj . We can then rearrange this method to create PIPE2CG without
needing additional matrix-vector multiplies or preconditioner applications. This approach
requires some additional vector storage compared to the two-term recurrence method, but
otherwise has similar costs. However using three-term recurrences has been shown to pro-
duce less accurate residuals than two-term recurrences, resulting in more limited accuracy
in some cases [3].

We can rearrange PCG3 to decrease the number of allreduces or overlap communication
and computation using recurrence relations to change the vector used in key kernels, allowing
us to rearrange the order of the kernels. This allows us to derive methods that are equivalent
to PCG3 in exact arithmetic but have more scalable properties. The number of matrix-vector
multiplies and preconditioner applications each iteration remains constant, but additional
vector multiply-adds and initialization costs are introduced. For the best performance, we
want to use the method that effectively minimizes the communication from the allreduce
while introducing as little overhead as possible. This approach produces three variations of
PCG3 that we investigate. Table 3.1 shows an overview of key differences between these
methods.

4. PIPECG3. We can derive a three-term recurrence variation of PIPECG by starting
with PCG3 and using a similar process as for the two-term recurrence variation of PIPECG
shown in [2]. We can derive this method by substituting

rj ← ρj(rj−1 − γj−1wj−1) + (1− ρj)rj−2 into zj ←Mrj

and simplifying

zj ←M(ρj(rj−1 − γj−1wj−1) + (1− ρj)rj−2)
zj ← ρj(Mrj−1 − γj−1Mwj−1)) + ((1− ρj)Mrj−2

pj−1 ←Mwj−1 and zj ← ρj(zj−1 − γj−1pj−1) + (1− ρj)zj−2

to get new equations for pj and zj . We can then move pj−1 to the previous iteration after
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Algorithm 4.1 Three-term Recurrence Pipelined PCG method
Input: A: n× n SPD matrix, x0: initial guess, b: right-hand side, M : prec
Output: xj : approximate solution
r0 ← b−Ax0 z0 ←Mr0 w0 ← Az0

δ0 ← (z0, w0) β0 ← (z0, r0) norm0 ←
√

(z0, z0) . 3 Merged Operations

MPI Iallreduce on δ0, β0, norm0 . Non-blocking Allreduce
p0 ←Mw0 q0 ← Ap0 . Overlap Comm and Comp

for j=1,2,...,until convergence do
γj−1 ← βj−1/δj−1

if j > 1 then ρj ← 1/(1− (γj−1/γj−2)(βj−1/βj−2)(1/ρj−1)
else ρj ← 1
xj ← ρj(xj−1 + γj−1zj−1) + (1− ρj)xj−2

rj ← ρj(rj−1 − γj−1wj−1) + (1− ρj)rj−2

zj ← ρj(zj−1 − γj−1pj−1) + (1− ρj)zj−2 . 7 Merged Operations
wj ← ρj(wj−1 − γj−1qj−1) + (1− ρj)wj−2

δj ← (zj , wj) βj ← (zj , rj) normj ←
√

(zj , zj)

MPI Iallreduce on δj , βj , normj . Non-blocking Allreduce
pj ←Mwj qj ← Apj . Overlap Comm and Comp

wj is computed. We can repeat this same process with wj ← Azj and our new equation for
zj to get

wj ← ρj(wj−1 − γj−1qj−1) + (1− ρj)wj−2 and qj−1 ← Apj−1.

We can then move qj−1 to the previous iteration after pj is computed. Since the dot
products do not use pj and qj , we can use a non-blocking allreduce and overlap it with
the matrix-vector multiply and preconditioner, giving us the PIPECG3 method shown in
Algorithm 4.1.

5. Pipelined 2-Iteration PCG. We can rearrange PIPECG3 to get a 2-step pipelined,
non-blocking PCG method (PIPE2CG). The PIPE2CG algorithm computes two iterations
of PCG at once. As a result, we overlap a single allreduce with two matrix-vector multi-
plies and two preconditioner applications each iteration. This potentially allows us to hide
the allreduce cost when the work per core becomes too small for PIPECG or PIPECG3
to overlap effectively. However, the initialization step continues to grow, requiring three
matrix-vector multiplies and three preconditioner applications. Therefore we need to ensure
that the solver will require enough iterations to overcome the increased initialization cost
and obtain a speedup. We can likely produce further pipelined methods that may produce
further speedups in some cases. For PIPE2CG performance results, see [1].

We can derive this method by first combining two iterations of PIPECG3 into a sin-
gle iteration to get Algorithm 5.1. We can then move the first matrix-vector multiply and
preconditioner application into the previous iteration immediately after the second matrix-
vector multiply and preconditioner application. We do this by substituting

wj ← ρj(wj−1 − γj−1qj−1) + (1− ρj)wj−2 into pj ←Mwj ,
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Algorithm 5.1 2-Iteration Three-term Recurrence Pipelined PCG method
Input: A: n× n SPD matrix, x0: initial guess, b: right-hand side, M : prec
Output: xj : approximate solution
r0 ← b−Ax0 z0 ←Mr0 w0 ← Az0

δ0 ← (z0, w0) β0 ← (z0, r0) norm0 ←
√

(z0, z0)

MPI Iallreduce on δ0, β0, norm0

p0 ←Mw0 q0 ← Ap0

for j=1,3,...,until convergence do
γj−1 ← βj−1/δj−1

if j > 1 then ρj ← 1/(1− (γj−1/γj−2)(βj−1/βj−2)(1/ρj−1)
else ρj ← 1
xj ← ρj(xj−1 + γj−1zj−1) + (1− ρj)xj−2

rj ← ρj(rj−1 − γj−1wj−1) + (1− ρj)rj−2

zj ← ρj(zj−1 − γj−1pj−1) + (1− ρj)zj−2

wj ← ρj(wj−1 − γj−1qj−1) + (1− ρj)wj−2

δj ← (zj , wj) βj ← (zj , rj) normj ←
√

(zj , zj)

MPI Iallreduce on δj , βj , normj

pj ←Mwj qj ← Apj

γj ← βj/δj ρj+1 ← 1/(1− (γj/γj−1)(βj/βj−1)(1/ρj)

xj+1 ← ρj+1(xj + γjzj) + (1− ρj+1)xj−1

rj+1 ← ρj+1(rj − γjwj) + (1− ρj+1)rj−1

zj+1 ← ρj+1(zj − γjpj) + (1− ρj+1)zj−1

wj+1 ← ρj+1(wj − γjqj) + (1− ρj+1)wj−1

δj+1 ← (zj+1, wj+1) βj+1 ← (zj+1, rj+1) normj+1 ←
√

(zj+1, zj+1)

MPI Iallreduce on δj+1, βj+1, normj+1

pj+1 ←Mwj+1 qj+1 ← Apj+1

and simplifying to get

cj−1 ←Mqj−1 and pj ← ρj(pj−1 − γj−1cj−1) + (1− ρj)pj−2.

Repeating the same process with qj ← Apj and our new equation for pj gives us

dj−1 ← Acj−1 and qj ← ρj(qj−1 − γj−1dj−1) + (1− ρj)qj−2.

Moving these new equations for cj−1 and dj−1 into the previous iteration gives us Algorithm
5.2, which has two iterations of matrix-vector multiplies and preconditioner applications
gathered together.

Next we need to move the dot products for the first δj and βj into the previous iteration.
We do this by substituting the full equations for zj , wj , and rj into the dot products, giving
us a larger set of dot products that rely on vectors from the previous iteration. This gives us

δj ← (ρj(zj−1 − γj−1pj−1) + (1 − ρj)zj−2, ρj(wj−1 − γj−1qj−1) + (1 − ρj)wj−2) and βj ←
(ρj(zj−1 − γj−1pj−1) + (1− ρj)zj−2, ρj(rj−1 − γj−1wj−1) + (1− ρj)rj−2).
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Algorithm 5.2 Pipelined 2-iteration PCG - Gather matrix kernels
r0 ← b−Ax0 z0 ←Mr0 w0 ← Az0

δ0 ← (z0, w0) β0 ← (z0, r0) norm0 ←
√

(z0, z0)

MPI Iallreduce on δ0, β0, norm0

p0 ←Mw0 q0 ← Ap0 c0 ←Mq0 d0 ← Ac0

for j=1,3,...,until convergence do
γj−1 ← βj−1/δj−1

if j > 1 then ρj ← 1/(1− (γj−1/γj−2)(βj−1/βj−2)(1/ρj−1)
else ρj ← 1
xj ← ρj(xj−1 + γj−1zj−1) + (1− ρj)xj−2

rj ← ρj(rj−1 − γj−1wj−1) + (1− ρj)rj−2

zj ← ρj(zj−1 − γj−1pj−1) + (1− ρj)zj−2

wj ← ρj(wj−1 − γj−1qj−1) + (1− ρj)wj−2

pj ← ρj(pj−1 − γj−1cj−1) + (1− ρj)pj−2

qj ← ρj(qj−1 − γj−1dj−1) + (1− ρj)qj−2

δj ← (zj , wj) βj ← (zj , rj)

Allreduce on δj , βj

γj ← βj/δj ρj+1 ← 1/(1− (γj/γj−1)(βj/βj−1)(1/ρj)

xj+1 ← ρj+1(xj + γjzj) + (1− ρj+1)xj−1

rj+1 ← ρj+1(rj − γjwj) + (1− ρj+1)rj−1

zj+1 ← ρj+1(zj − γjpj) + (1− ρj+1)zj−1

wj+1 ← ρj+1(wj − γjqj) + (1− ρj+1)wj−1

δj+1 ← (zj+1, wj+1) βj+1 ← (zj+1, rj+1) normj+1 ←
√

(zj+1, zj+1)

MPI Iallreduce on δj+1, βj+1, normj

pj+1 ←Mwj+1 qj+1 ← Apj+1 cj+1 ←Mqj+1 dj+1 ← Acj+1

We can simplify these equations, move the multipliers into φ, and move the dot products to
individual equations. This gives us simpler equations for δ and β and allows us to compute
the dot products in the previous iteration.

We can use the vector equalities q = Ap, p = Mw, w = Az, and z = Mr to change
the vectors included in a dot product, allowing us to reduce the number of dot products to
10 unique dot products. Note that these transformations assume both a symmetric matrix
and preconditioner.

Transformations for δ:
(zj , wj) = (Mrj , wj) = (rj ,Mwj) = (rj , pj)
(pj , wj) = (Aqj , wj) = (qj , Awj) = (zj , qj)
(zj , wj−1) = (Awj , wj−1) = (wj , Awj−1) = (wj , zj−1)
(pj , wj−1) = (Aqj , wj−1) = (qj , Awj−1) = (qj , zj−1)

Transformations for β:
(zj−1, rj) = (Mrj−1, rj) = (rj−1,Mrj) = (zj , rj−1)
(pj , rj−1) = (Mwj , rj−1) = (wj ,Mrj−1) = (zj−1, wj) = (zj , wj−1)
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Next we want to move these dot products into the previous iteration after the vector
operations and before the matrix-vector multiplies and preconditioner applications. We are
able to move most of the dot products to this point in the algorithm; however, there are a
couple dot products that use pj and qj . Therefore we can only move these dot products to
the point after we compute pj and qj , giving us Algorithm 5.3.

Algorithm 5.3 Pipelined 2-iteration PCG - Move Dot Products
r0 ← b−Ax0 z0 ←Mr0 w0 ← Az0

δ0 ← (z0, w0) β0 ← (z0, r0) norm0 ←
√

(z0, z0)

MPI Iallreduce on δ0, β0, norm0

p0 ←Mw0 q0 ← Ap0 c0 ←Mq0 d0 ← Ac0

for j=1,3,...,until convergence do
if j > 1 then

ρj−1 ← 1/(1− (γj−1βj−1)/(γj−2βj−2ρj−2) γj−1 ← βj−2/δj−2

φ← [ρj−1,−ρj−1γj−1, (1− ρj−1)]
δj−1 ← φ0φ0λ0 + 2φ0φ1λ1 + 2φ0φ2λ2 + φ1φ1λ3 + 2φ1φ2λ4 + φ2φ2λ5

βj−1 ← φ0φ0λ6 + 2φ0φ1λ0 + 2φ0φ2λ7 + φ1φ1λ1 + 2φ1φ2λ2 + φ2φ2λ8

γj ← βj−1/δj−1 ρj ← 1/(1− (γjβj−1)/(γj−1βj−2ρj−1)
else

ρj ← 1 γj ← βj−1/δj−1

if j > 1 then
xj−1 ← ρj−1(xj−2 + γj−1zj−2) + (1− ρj)xj−3

rj−1 ← ρj−1(rj−2 − γj−1wj−2) + (1− ρj)rj−3

zj−1 ← ρj−1(zj−2 − γj−1pj−2) + (1− ρj)zj−3

wj−1 ← ρj−1(wj−2 − γj−1qj−2) + (1− ρj)wj−3

pj−1 ← ρj−1(pj−2 − γj−1cj−2) + (1− ρj)pj−3

qj−1 ← ρj−1(qj−2 − γj−1dj−2) + (1− ρj)qj−3

xj ← ρj(xj−1 + γjzj−1) + (1− ρj)xj−2

rj ← ρj(rj−1 − γjwj−1) + (1− ρj)rj−2

zj ← ρj(zj−1 − γjpj−1) + (1− ρj)zj−2

wj ← ρj(wj−1 − γjqj−1) + (1− ρj)wj−2

λ0 ← (zj , wj) λ2 ← (zj , wj−1) λ5 ← (zj−1, wj−1)
λ6 ← (zj , rj) λ7 ← (zj , rj−1) λ8 ← (zj−1, rj−1) λ9 ← (zj , zj)
δj ← λ0 βj ← λ6 normj ←

√
λ9

pj ←Mwj qj ← Apj
λ1 ← (zj , qj) λ3 ← (pj , qj) λ4 ← (pj , wj−1)
MPI Iallreduce on λ0 to λ9

cj ←Mqj dj ← Acj

Therefore we must move pj ←Mwj and qj ← Apj into the previous iteration so we can
gather all of the dot products together. We substitute

wj ← ρj(wj−1 − γjqj−1) + (1− ρj)wj−2 into pj ←Mwj and
pj ← ρj(pj−1 − γjcj−1) + (1− ρj)pj−2 into qj ← Apj
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to get

pj ← ρj(pj−1 − γjcj−1) + (1− ρj)pj−2 and
qj ← ρj(pj−1 − γjdj−1) + (1− ρj)qj−2.

Since these computations for pj and qj rely on cj−1 and dj−1, we must insert computa-
tions for cj−1 = Mqj−1 and dj−1 = Acj−1 prior to these vector operations. This gives us
Algorithm 5.4.

Algorithm 5.4 Pipelined 2-iteration PCG - Gather Dot Products
r0 ← b−Ax0 z0 ←Mr0 w0 ← Az0

δ0 ← (z0, w0) β0 ← (z0, r0) norm0 ←
√

(z0, z0)

MPI Iallreduce on δ0, β0, norm0

p0 ←Mw0 q0 ← Ap0 c0 ←Mq0 d0 ← Ac0

for j=1,3,...,until convergence do
if j > 1 then

ρj−1 ← 1/(1− (γj−1βj−1)/(γj−2βj−2ρj−2) γj−1 ← βj−2/δj−2

φ← [ρj−1,−ρj−1γj−1, (1− ρj−1)]
δj−1 ← φ0φ0λ0 + 2φ0φ1λ1 + 2φ0φ2λ2 + φ1φ1λ3 + 2φ1φ2λ4 + φ2φ2λ5

βj−1 ← φ0φ0λ6 + 2φ0φ1λ0 + 2φ0φ2λ7 + φ1φ1λ1 + 2φ1φ2λ2 + φ2φ2λ8

γj ← βj−1/δj−1 ρj ← 1/(1− (γjβj−1)/(γj−1βj−2ρj−1)
else

ρj ← 1 γj ← βj−1/δj−1

if j > 1 then
xj−1 ← ρj−1(xj−2 + γj−1zj−2) + (1− ρj−1)xj−3

rj−1 ← ρj−1(rj−2 − γj−1wj−2) + (1− ρj−1)rj−3

zj−1 ← ρj−1(zj−2 − γj−1pj−2) + (1− ρj−1)zj−3

wj−1 ← ρj−1(wj−2 − γj−1qj−2) + (1− ρj−1)wj−3

pj−1 ← ρj−1(pj−2 − γj−1cj−2) + (1− ρj−1)pj−3

qj−1 ← ρj−1(qj−2 − γj−1dj−2) + (1− ρj−1)qj−3

cj−1 ←Mqj−1 dj−1 ← Acj−1

xj ← ρj(xj−1 + γjzj−1) + (1− ρj)xj−2

rj ← ρj(rj−1 − γjwj−1) + (1− ρj)rj−2

zj ← ρj(zj−1 − γjpj−1) + (1− ρj)zj−2

wj ← ρj(wj−1 − γjqj−1) + (1− ρj)wj−2

pj ← ρj(pj−1 − γjcj−1) + (1− ρj)pj−2

qj ← ρj(qj−1 − γjdj−1) + (1− ρj)qj−2

λ0 ← (zj , wj) λ1 ← (zj , qj) λ2 ← (zj , wj−1) λ3 ← (pj , qj)
λ4 ← (pj , wj−1) λ5 ← (zj−1, wj−1) λ6 ← (zj , rj) λ7 ← (zj , rj−1)
λ8 ← (zj−1, rj−1) λ9 ← (zj , zj)
δj ← λ0 βj ← λ6 normj ←

√
λ9

MPI Iallreduce on λ0 to λ9

cj ←Mqj dj ← Acj

The resulting algorithm allows us to overlap the non-blocking allreduce with one matrix-
vector multiply and preconditioner application, but not both. Additionally we cannot
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pipeline all of the vector operations. Therefore we need to move the first matrix-vector
multiply and preconditioner to the previous iteration. We do this by substituting

qj−1 ← ρj(qj−2 − γj−1dj−2) + (1− ρj)qj−3 into cj−1 ←Mqj−1 and
the new equation for cj−1 into dj−1 ← Acj−1

to get

cj−1 ← ρj(cj−2 − γj−1gj−1) + (1− ρj)cj−3 and gj−2 ←Mdj−2 and
dj−1 ← ρj(dj−2 − γj−1hj−1) + (1− ρj)dj−3 and hj−2 ← Agj−2.

We can then move the new matrix-vector multiply and preconditioner application into
the previous iteration after the other matrix-vector multiply and preconditioner application.
Since none of the dot products rely on the results of these kernels, we can now fully overlap
both matrix-vector multiplies and preconditioner applications with a single non-blocking
allreduce. We move the vector operations into a separate routine to simplify the main
routine. The final version of PIPE2CG is shown in Algorithms 5.5 and 5.6.

Algorithm 5.5 PIPELINED 2-Iteration PCG
Input: A: n× n SPD matrix, x0: initial guess, b: right-hand side, M : prec
Output: xj : approximate solution
r0 ← b−Ax0 z0 ←Mr0 w0 ← Az0

δ0 ← (z0, w0) β0 ← (z0, r0) norm0 ←
√

(z0, z0) . 3 Merged Operations

MPI Iallreduce on δ0, β0, norm0

p0 ←Mw0 q0 ← Ap0 . Overlap Comm and Comp
c0 ←Mq0 d0 ← Ac0

for j=1,3,...,until convergence do
if j > 1 then

ρj−1 ← 1/(1− (γj−1βj−1)/(γj−2βj−2ρj−2) γj−1 ← βj−2/δj−2

φ← [ρj−1,−ρj−1γj−1, (1− ρj−1)]
δj−1 ← φ0φ0λ0 + 2φ0φ1λ1 + 2φ0φ2λ2 + φ1φ1λ3 + 2φ1φ2λ4 + φ2φ2λ5

βj−1 ← φ0φ0λ6 + 2φ0φ1λ0 + 2φ0φ2λ7 + φ1φ1λ1 + 2φ1φ2λ2 + φ2φ2λ8

ρj ← 1/(1− (γjβj−1)/(γj−1βj−2ρj−1)) γj ← βj−1/δj−1

else
ρj ← 1 γj ← βj−1/δj−1

VecPipelined PIPE2CG()

MPI Iallreduce on λ0 to λ9

cj ←Mqj dj ← Acj . Overlap Comm and Comp
gj ←Mdj hj ← Agj
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Algorithm 5.6 VecPipelined PIPE2CG
µj ← 1− ρj µj−1 ← 1− ρj−1

if j > 1 then
xj−1 ← ρj−1(xj−2 + γj−1zj−2) + µj−1xj−3

rj−1 ← ρj−1(rj−2 − γj−1wj−2) + µj−1rj−3

zj−1 ← ρj−1(zj−2 − γj−1pj−2) + µj−1zj−3 . 8 Merged Operations
wj−1 ← ρj−1(wj−2 − γj−1qj−2) + µj−1wj−3

pj−1 ← ρj−1(pj−2 − γj−1cj−2) + µj−1pj−3

qj−1 ← ρj−1(qj−2 − γj−1dj−2) + µj−1qj−3

cj−1 ← ρj−1(cj−2 − γj−1gj−2) + µj−1cj−3

dj−1 ← ρj−1(dj−2 − γj−1hj−2) + µj−1dj−3

xj ← ρj(xj−1 + γjzj−1) + µjxj−2

rj ← ρj(rj−1 − γjwj−1) + µjrj−2 . 16 Merged Operations
zj ← ρj(zj−1 − γjpj−1) + µjzj−2

wj ← ρj(wj−1 − γjqj−1) + µjwj−2

pj ← ρj(pj−1 − γjcj−1) + µjpj−2

qj ← ρj(qj−1 − γjdj−1) + µjqj−2

λ0 ← (zj , wj) λ1 ← (zj , qj) λ2 ← (zj , wj−1) λ3 ← (pj , qj)
λ4 ← (pj , wj−1) λ5 ← (zj−1, wj−1) λ6 ← (zj , rj) λ7 ← (zj , rj−1)
λ8 ← (zj−1, rj−1) λ9 ← (zj , zj)
δj ← λ0 βj ← λ6 normj ←

√
λ9

6. Conclusions. We have shown detailed derivations of the PIPECG3 and PIPE2CG
methods. These variations of the preconditioned conjugate gradient method are based on
the three-term recurrence variation of PCG and allow us to develop the PIPE2CG method
that overlaps 2-iterations of matrix-vector multiplies and preconditioner applications with
a single non-blocking allreduce. This produces a more scalable PCG method that performs
better as communication costs increase and work per core decreases. This approach provides
the potential to develop further pipelined non-blocking PCG methods.
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NUMERICAL METHODS FOR ORTHOGONAL SPLINE COLLOCATION
DISCRETIZATIONS IN PDE CONSTRAINED OPTIMIZATION

NICHOLAS L. FISHER∗ AND ERIC C. CYR†

Abstract. A new discretization for PDE constrained optimization based on piecewise Hermite cubic or-
thogonal spline collocation (OSC) is introduced. An optimal preconditioner for the MINRES iteration is also
introduced, and the optimality of the preconditioner is proven theoretically and confirmed computationally.

1. Introduction. In [9], the authors present a method for PDE constrained optimiza-
tion using the Galerkin finite element method to discretize the problem. Additionally, they
conjecture that the overall method should be compatible with other discretization tech-
niques. In what follows, we demonstrate how piecewise Hermite cubic OSC can be applied
to some simple problems arising from PDE constrained optimization. Importantly, the lin-
ear system resulting from the OSC discretization has a saddle-point structure. Thus, the
discrete version of the PDE optimization problem is readily solved via an iterative Krylov
subspace method. To that end, a suitable preconditioner for the minimum residual (MIN-
RES) method [8] is found and shown to be optimal. However, a complete study of OSC
for PDE constrained optimization would require an analysis similar to that done in the
functional setting for finite element discretizations. This effort is left for future work.

The rest of the paper is outlined as follows. In Section 2, the piecewise Hermite cubic
and bicubic OSC methods are introduced. Section 3 outlines the formulation of the OSC
method for PDE constrained optimization and discusses the preconditioning of the MINRES
iteration. Finally, numerical results are presented in Section 4, and concluding remarks are
given in Section 5.

2. Piecewise Hermite Cubic and Bicubic OSC. Orthogonal spline collocation
methods have been widely used to solve boundary value problems [3]. In this paper we
focus on the use of piecewise Hermite cubic basis functions as the spectral properties of the
resulting collocation systems are well understood [2, 11], and it leads to a numerical method
that is rather straightforward to implement.

2.1. Piecewise Hermite Cubic OSC for Two-Point BVP . We introduce the
piecewise Hermite cubic OSC method by way of example. Consider the two-point boundary
value problem:

− p(x)u′′ + r(x)u′ + q(x)u = f(x), u(0) = u(1) = 0. (2.1)

Let {xi}Ni=0, with N a positive integer, be a uniform partition of [0, 1], i.e.,

xk = kh, k = 0, . . . , N (2.2)

where the step size is h = 1/N . DefineM0 to be the space of piecewise Hermite cubics with
the breaks at the xi , that is,

M0 = {v ∈ C1[0, 1] : v|[xi−1,xi] ∈ P3, i = 1, . . . , N, v(0) = v(1) = 0},

where P3 is the set of polynomials of degree ≤ 3.

∗Department of Applied Mathematics and Statistics, Colorado School of Mines, nfisher@mines.edu
†Sandia National Laboratories, eccyr@sandia.gov
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Let {ζk}2k=1 be the nodes of the 2-point Gauss-Legendre quadrature for (−1, 1), and let
{ξm}2Nm=1 be the set of the collocation points in (0, 1) defined by

ξ2n+1 = xn + hζ1, ξ2n+2 = xn + hζ2, n = 0, . . . , N − 1. (2.3)

Then, the OSC problem corresponding to (2.1) consists in finding U ∈M0 such that

− p(ξn)U ′′(ξn) + r(ξn)U ′(ξn) + q(ξn)U(ξn) = f(ξn), n = 1, . . . , 2N. (2.4)

If {φj}2Nj=1 is a basis for M0, then we can write

U =
2N∑
j=1

Ujφj .

Thus (2.4) amounts to solving a system of linear equations for the coefficients {Uj}2Nj=1.
That is, for

[Ā]i,j = (−φ′′j (ξi))2N
i,j=1, [B̄]i,j = (φj(ξi))2N

i,j=1, (2.5)

[C̄]i,j = (φ′j(ξi))
2N
i,j=1

we have (
D(p)Ā+D(r)C̄ +D(q)B̄

)
u = f ,

where,

D(g) = diag(g(ξ1), g(ξ2), . . . , g(ξ2N ))

with the coefficients of the piecewise Hermite cubic spline interpolant,

u = [U(x1), U ′(x1)/h, . . . , U(xN ), U ′(xN )/h]T ,

and

f = [f(ξ1), f(ξ2), . . . , f(ξ2N )]T .

2.2. Piecewise Hermite Bicubic OSC for Poisson’s Equation. The Dirichlet
boundary value problem for Poisson’s equation on the unit square is given by

−∇2u = f(x, y), (x, y) ∈ Ω, u(x, y) = g(x, y), (x, y) ∈ ∂Ω (2.6)

where Ω = (0, 1)× (0, 1).
In what follows we discretize with respect to a uniform partition of Ω for brevity. To that

end, let {yi}Ni=0 be a uniform partition of [0, 1] in the same manner as (2.2). Consequently,
if g(x, y) = 0 then collocation equations for (2.6) with respect to a uniform discretization of
Ω are given by

−∇2U(ξ) = f(ξ), ξ ∈ G (2.7)

for U ∈ M0 ⊗M0 and where G = {(x, y) : x, y ∈ {ξm}2Nm=1}. Assuming {φj}2Nj=1 is a basis
for M0, we can write the piecewise Hermite bicubic orthogonal collocation approximation
to the solution of (2.6) as

U(x, y) =
2N∑
i=1

2N∑
j=1

Ui,jφi(x)φj(y).
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Hence, the corresponding matrix-vector form of (2.7) is

Au = f (2.8)

where, if Ā and B̄ are defined by (2.5),

A = Ā⊗ B̄ + B̄ ⊗ Ā, (2.9)

for ⊗ denoting the tensor product, and

u = [U1,1, . . . , U1,2N , . . . , U2N,1, . . . , U2N,2N ]T ,

where the Ui,j are the coefficients of the piecewise Hermite bicubic spline interpolant, and
with

f = [f1,1, . . . , f1,2N , . . . , f2N,1, . . . , f2N,2N ]T , fi,j = f(ξi, ξj).

The piecewise Hermite bicubic orthogonal spline collocation approximation to Poisson’s
equation is presented with homogeneous Dirichlet boundary conditions for simplicity; how-
ever, in [3], the authors describe two methods for handling more general boundary condi-
tions. For example, one may compute the piecewise cubic interpolant of u at the boundary
Gauss points. Then, these coefficients can be moved to the right-hand side of (2.8) and the
problem reduces to the homogeneous case.

3. PDE Constrained Optimization.

3.1. Distributed Control of Poisson’s Equation. Consider the distributed control
problem:

min
u,f

1
2
‖u− û‖2L2(Ω) + β‖f‖2L2(Ω), Ω ⊂ R2 (3.1)

subject to

−∇2u(x, y) = f(x, y), (x, y) ∈ Ω (3.2)

with

u(x, y) = g(x, y), (x, y) ∈ ∂Ω. (3.3)

The desired state û is known, while u and f , satisfying the PDE, are allowed to vary in order
to minimize the cost functional (3.1). The second term in (3.1) is the Tikhonov penalty
term; it ensures the well posedness of the problem. The Tikhonov parameter β is often
taken to be 10−2 [9].

3.1.1. Discretization by OSC. Next, for U, f ∈M0 ⊗M0, we consider the colloca-
tion equations for (3.1) - (3.3) with g = 0 and Ω = [0, 1]× [0, 1]:

min
U,f

1
2
‖U(ξ)− û(ξ)‖22 + β‖f(ξ)‖22, ξ ∈ G (3.4)

such that

−∇2U(ξ) = f(ξ), ξ ∈ G. (3.5)
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The discrete cost functional can now be written,

min
U,f

1
2
‖U(ξ)− û(ξ)‖22 + β‖f(ξ)‖22 = min

u,f

1
2
uBTBuT − uTBTb + α+ βfT f (3.6)

with u and f as defined in Section 2.2, b = (û(ξ1, ξ1), . . . , û(ξ2N , ξ2N ))T , and where α = ‖b‖22
and for B̄ given in (2.5),

B = B̄ ⊗ B̄. (3.7)

Note that the constraint in (3.5) is equivalent to (2.8). Hence, (3.4) and (3.5) are equiva-
lent to (3.6) and (2.8). The minimization problem may now be solved by considering the
Lagrangian

L :=
1
2
uTBTBuT − uTBTb + α+ βfT f + λT (Au− f). (3.8)

Using the stationarity conditions of L, it can be shown that f , u, and λ are defined by the
linear system, 2βI 0 −I

0 BTB AT

−I A 0


︸ ︷︷ ︸

A

f
u
λ

 =

 0
BTb

0

 . (3.9)

Importantly, this system has saddle-point structure. That is, (3.9) has the form[
M KT

K −L

] [
x
y

]
=
[
c
d

]
(3.10)

where M =
[
2βI 0

0 BTB

]
, K =

[
−I A

]
, L = 0.

In general, the system given in (3.9) is very large; however, the Hermite cubic OSC
discretization generates sparse matrices of almost block diagonal form. Additionally, (3.9)
is symmetric, thus the preconditioned MINRES method is applicable.

3.1.2. Preconditioned MINRES. Following [9] and [6], we will investigate the pre-
conditioner of the form

P1 =

2βI 0 0
0 BTB 0
0 0 1

2β I +A(BTB)−1AT

 . (3.11)

This preconditioner can be approximated (for β not “too” small) by

P2 =

2βI 0 0
0 BTB 0
0 0 A(BTB)−1AT

 . (3.12)

Theorem 3.1. Let λ be an eigenvalue of P−1
2 A with P2 defined by (3.12) and A defined

by (3.9). Then either λ = 1,

1
2
(
1 +
√

1 + 4σ1

)
≤ λ ≤ 1

2
(
1 +
√

1 + 4σm
)
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or,

1
2
(
1−
√

1 + 4σm
)
≤ λ ≤ 1

2
(
1−
√

1 + 4σ1

)
where 0 ≤ σ1 ≤ · · · ≤ σm are the eigenvalues of I + 1

2βA
−T (BTB)A−1.

Proof. By similarity transformation, the eigenvalues of P−1
2 A are identical to the eigen-

values of Ã := P−1/2
2 AP−1/2

2 . By simple calculation, we have

Ã =

 I 0 K̃1

0 I K̃2

K̃1 K̃2 0


where K̃1 = 1√

2β

(
A(BTB)−1AT

)−1/2, K̃2 =
(
A(BTB)−1AT

)−1/2
A(BTB)−1/2.

The rest of the proof follows that of Proposition 2 in [9].
Lemma 3.2. For Ā and B̄ given by (2.5), and for A and B defined by (2.9) and (3.7),

respectively, we have the following:
1. The eigenvalues of the generalized eigenvalue problem

Āx = λB̄x (3.13)

satisfy the inequality:

π2 ≤ λ ≤ 36
h2
.

2. The eigenvalues of the generalized eigenvalue problem

Ax = λBx (3.14)

satisfy the inequality:

2π2 ≤ λ ≤ 72
h2
.

Proof. From Theorem 2.1 in [2], the eigenvalue problem (3.13) has 2N distinct eigen-
values given by

λ±j =
72
h2

sin2
(
jπ
2N

)
γ±j

, j ∈ Q, λ0 =
36
h2
, λN =

12
h2

(3.15)

where

γ±j = 8 + ηj ∓
√

43 + 40ηj − 2η2
j , ηj = cos

(
jπ

N

)
, j ∈ Q (3.16)

with Q = {1, 2, . . . , N − 1}. Moreover, it is known [1] that the eigenvalues of (3.13) satisfy
the inequality π2 ≤ λ ≤ 36

h2 .
To prove the second part of the lemma, consider that B̄ is invertible, hence, B is

invertible. Thus,

Ax = λBx(
Ā⊗ B̄ + B̄ ⊗ Ā

)
x = λ

(
B̄ ⊗ B̄

)
x(

B̄−1Ā⊗ I + I ⊗ B̄−1Ā
)
x = λx
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We know that if λ satisfies (3.13), then λ is an eigenvalue of the matrix B̄−1Ā . Thus, appli-
cation of some basic properties of the tensor product will complete the proof. Specifically,
by Theorem 13.16 in [5], it follows that the 4N2 eigenvalues of B̄−1Ā⊗ I + I ⊗ B̄−1Ā are

2λ1, . . . , 2λ1︸ ︷︷ ︸
2N terms

, 2λ2, . . . , 2λ2︸ ︷︷ ︸
2N terms

, . . . , 2λ2N , . . . , 2λ2N︸ ︷︷ ︸
2N terms

(3.17)

where, λ1, . . . , λ2N are the eigenvalues of B̄−1Ā. Thus, 3.17 and part (1) of the lemma yield
the desired result.

Corollary 3.3. Let λ be an eigenvalue of P−1
2 A, with P2 and A defined in Theorem

3.1 and with A and B defined in Lemma 3.2. Then λ satisfies one of

λ = 1,

1
2

(
1 +

√
5 +

h4

2 · 362β

)
≤ λ ≤ 1

2

(
1 +

√
5 +

1
2π4β

)
or,

1
2

(
1−

√
5 +

1
2π4β

)
≤ λ ≤ 1

2

(
1−

√
5 +

h4

2 · 362β

)
.

Proof. From Theorem 3.1, we know that the clustering of the eigenvalues of the precondi-
tioned systems depends of finding the eigenvalues of the matrix T := I+ 1

2βA
−T (BTB)A−1.

Thus, if λ is an eigenvalue of T , then

Tx = λx(
1

2βA
−T (BTB)A−1 + I

)
x = λx

(AB−1)−T (AB−1)−1x = 2β(λ− 1)x

Next, it follows from part (2) of Lemma 3.2 that if γ is an eigenvalue of the matrix (AB−1)−1

then h2

72 ≤ γ ≤
1

2π2 . Hence

h4

8 · 362β
+ 1 ≤ λ ≤ 1

8π2β
+ 1. (3.18)

The desired result follows from (3.18) and Theorem 3.1.
Note that the bounds of Corollary 3.3 depend on h in such a way that the eigenvalues

of T remain bounded away from 0 as h → 0. This suggests that the preconditioner P2 is
optimal, i.e., its performance is independent of mesh size. A comparison of the theoretical
bounds to the computed eigenvalues of P−1

2 A for two different values of β can be seen in
Figures 3.1.(a) and 3.1.(b).

3.2. Distributed Control of Burgers’ Equation. We consider the optimal control
problem with the steady state Burgers’ equation in one spatial dimension acting as the
constraint. That is, for Ω = [0, 1], and ∂Ω = {0, 1} we have

min
u,g

1
2
‖u− û‖2L2(Ω) +

α

2
‖g‖2L2(Ω) (3.19)

s.t.− νuxx + uux = g in Ω (3.20)

u = 0 on ∂Ω. (3.21)

As before, the desired state û is known, u is the state variable, and g is the control variable.
Additionally, ν is the viscosity and α plays the role of the penalty parameter.
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(a) (b)

Fig. 3.1: Eigenvalues of P−1
2 A and the theoretical bounds given by Corollary 3.3 (lines are

the bounds, ·’s are the eigenvalues). β = 10−2 and β = 10−5 in (a) and (b), respectively.

3.2.1. A Local Newton-Lagrange Method. Next, we consider the equality con-
strained optimization problem:

min f(x)
s.t. h(x) = 0 (3.22)

where f : Rn → R and h : Rn → Rm are sufficiently smooth functions. A standard
approach [7] for solving non-linear optimization problems is to apply Newton’s method to
the Karush-Kuhn-Tucker (KKT) optimality conditions [7] for (3.22).

Recall that the Lagrangian function for (3.22) is L(x, λ) = f(x) + λTh(x). Then the
first order KKT conditions for (3.22) can be written as

F (x, λ) =
[
∇L(x, λ)
h(x)

]
= 0. (3.23)

The non-linear system of equations (3.23) can now be solved by Newton’s method. To that
end, note that the Jacobian of (3.23) is given by

JF (x, λ) =
[
HL(x, λ) Jh(x)T

Jh(x) 0

]
(3.24)

where H and J denote the Hessian and Jacobian, respectively.
Hence, we arrive at the Newton-KKT system,[

HL(xk, λk) Jh(xk)T

Jh(xk) 0

] [
δx
δλ

]
= −

[
∇L(xk, λk)
h(xk)

]
(3.25)

where the Newton step is given by,

xk+1 = xk + δx,
λk+1 = λk + δλ.

(3.26)

Thus, the Newton-Lagrange algorithm is: solve (3.25), update using (3.26) and repeat until
convergence. It is worth noting that this method may not converge if the initial guess for x
is not “close enough” to the optimal solution x∗.
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3.2.2. Problem Discretization. We discretize the problem using piecewise Hermite
cubic orthogonal spline collocation. To that end, consider the collocation equations of
(3.20)-(3.21): find U ∈M0 such that

− νUxx(ξ) + U(ξ)Ux(ξ) = g(ξ), ξ ∈ G. (3.27)

Assume that {φ1, . . . , φ2N} is a basis for M0, then we can write

U =
2N∑
j=1

Ujφj .

Hence, for the matrices Ā, B̄, and C̄ defined in (2.5), this yields the matrix-vector form of
(3.27),

νĀu +N(u) = g (3.28)

where N(u) = B̄u ◦ C̄u and, ◦, denotes the element-wise product of two vectors. Thus we
arrive at the discrete form of the Lagrangian,

L(g,u, λ) =
1
2
uT B̄T B̄u− uT B̄Tb + γ +

α

2
gTg + λT

(
νĀu +N(u)− g

)
. (3.29)

Now we can write (3.25) for the problem (3.19) - (3.21) with the discrete Lagrangian given
by (3.29) and the discrete constraint given by (3.28). Specifically,

∇L(g,u, λ) =
[

αg − λ
B̄T B̄u− B̄Tb + νĀTλ+N ′(u)Tλ

]
, (3.30)

h(g,u) = νĀu +N(u)− g, (3.31)

Jh(g,u) =
[
−I νĀ+N ′(u)

]
, (3.32)

with,

N ′(u) = B̄diag(C̄u) + diag(B̄u)C̄. (3.33)

Next, the Hessian can be approximated by ignoring the contribution from the nonlinear
term. Namely,

HL(g,u, λ) ≈
[
αI 0
0 B̄T B̄

]
. (3.34)

This may affect the convergence of the overall algorithm, yet numerical experiments suggest
that this approximation still yields good results.

3.2.3. Preconditioned MINRES for the Newton-Lagrange Iteration. The ap-
proximate Hessian Newton-Lagrange iteration is given by the linear system,

αI 0 −I
0 B̄T B̄ Ã(uk)T

−I Ã(uk) 0


︸ ︷︷ ︸

AB

δgδu
δλ

 = −
[
∇L(gk,uk, λk)
h(gk,uk)

]
(3.35)
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where Ã(uk) = νĀ + N ′(uk). Clearly, AB is another saddle point system. Consequently,
each step of the Newton-Lagrange iteration may be solved by preconditioned MINRES. The
natural choice for a block diagonal preconditioner is the following,

PB =

αI 0 0
0 B̄T B̄ 0
0 0 Ã(uk)(B̄T B̄)−1Ã(uk)T

 . (3.36)

4. Numerical Experiments. We test our methods using some simple examples. First
we seek to demonstrate the optimality of the preconditioning approach outlined in Section
3.1.2. Next, we show the results of the Newton-Lagrange method applied to the distributed
control of Burgers’ equation.

4.1. Distributed Control of Poisson’s Equation. The first problem we address is
modified from Example 10 in [9].

Example 1. Let Ω = [0, 1]m, where m = 1, 2, and consider the problem

min
u,f

1
2
‖u− û‖2L2(Ω) + β‖f‖2L2(Ω), (4.1)

subject to

−∇2u = f in Ω (4.2)

with

u = 0 on ∂Ω. (4.3)

where, in 1D,

û = exp
(
−64(x− 0.5)2

)
and, in 2D,

û = exp
(
−64

(
(x− 0.5)2 + (y − 0.5)2

))
.

In Figures 4.1 and 4.2, the number of iterations for MINRES to converge is plotted against
the stepsize h for different values of β in 1 and 2 dimensions, respectively. It is clear that,
for larger values of β, the number of iterations for MINRES to converge remains constant
as h decreases.

4.2. Distributed Control of Burgers’ Equation. We follow [10], in our setup of
the distributed control of Burgers’ equation.

Example 2. Let Ω = [0, 1], and consider

min
u,f

1
2
‖u− û‖2L2(Ω) +

α

2
‖g‖2L2(Ω), (4.4)

subject to

− νuxx + uux = g in Ω (4.5)

with

u = 0 on ∂Ω. (4.6)
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Fig. 4.1: Number of iterations for MINRES to solve Example 1 in 1D to a tolerance of 10−6

for β = 10−2, β = 5× 10−5, β = 10−5 and β = 5× 10−8.

Fig. 4.2: Number of iterations for MINRES to solve Example 1 in 2D to a tolerance of 10−6

for β = 10−2, β = 5× 10−5, β = 10−5 and β = 5× 10−8.

where,

û = û(x) = sin(2πx).

To demonstrate results for the distributed control of Burgers’ equation, a uniform par-
tition of Ω with 100 subintervals is used to discretize Example 2. The Newton-Lagrange
algorithm, is initialized with the vectors λ0 = u0 = g0 = 0. The algorithm is terminated
when both ‖∇L(u,g, λ)‖2 < tolNewton and ‖h(u,g)‖2 < tolNewton. For this example, we
choose tolNewton = 10−6. In Figure 4.3, typical examples of the control and state solution
are shown with α = 10−5 and ν = 10−2.

Finally, we test how well MINRES performs across Newton iterations. Again, we choose
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λ0 = u0 = g0 = 0 and terminate the algorithm when the norm of both constraint and the
gradient of the Lagrangian are less than tolNewton = 10−4. In addition, we set a tolerance
for MINRES, tolMINRES = 10−8, and terminate the Newton method if the iteration count
exceeds iNewtonmax = 25. Similarly, MINRES is terminated if the iteration count exceeds
iMINRES
max = 100. A uniform partition of Ω with 64 subintervals is used, and the algorithm

is tested for several different values of α and ν. Specifically, for each penalty parameter
α = 1, 0.01, 0.0001 the algorithm is run with the viscosities ν = 1, 0.1, 0.01, 0.001. The
results of the numerical experiments are shown in Figure 4.4.

(a) Control Solution (b) State Solution

Fig. 4.3: Distributed control of Burgers’ equation where α = 10−5 and ν = 10−2.
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(a)

(b) (c)

Fig. 4.4: Performance of MINRES across Newton iterations for the distributed control of
Burgers’ equation.

5. Conclusions. It has been shown how one can construct numerical methods for the
solution of PDE constrained optimization problems based on piecewise Hermite cubic or-
thogonal spline collocation and Newton’s method. In the linear case, the corresponding
block diagonal preconditioner was shown to be optimal, both theoretically and computa-
tionally. Multigrid methods have been explored for collocation methods [4], thus it maybe
possible to accelerate the convergence of MINRES, and thus make the overall method more
competitive. Additionally, spectral analysis of more general collocation systems has been
conducted [11] indicating that the OSC method may be applicable to a broader class of
PDE constraints while still maintaining the optimality of the preconditioner for the MIN-
RES iteration. Finally, we note that, in this manuscript, the OSC discretization is applied
without any functional-analytic considerations. Such considerations are left for future work.
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INCREASING CONCURRENCY IN TWO-LEVEL SCHWARZ
PRECONDITIONERS VIA ADDITIVE VARIANTS

MASSIMILIANO LUPO PASINI∗, RAYMOND S. TUMINARO† , AND JONATHAN HU‡

Abstract. Geometric multigrid (GMG) and domain decomposition (DD) are effective precondition-
ers for many partial differential equation applications. In this paper multiplicative and additive variants
are formulated to increase concurrency on high performance computing architectures. Multiplicative meth-
ods are preferred from a convergence perspective, while additive variants can provide increased potential
concurrency with the possible drawback of a deteriorated convergence rate.

In this paper we investigate a recently-formulated additive scheme that can obtain convergence compa-
rable with multiplicative approaches at a computational cost comparable with additive approaches. Specif-
ically, we consider an additive multigrid approach proposed by Vassilevski and Meier Yang in [20] that we
adapt to a domain decomposition setting.

1. Introduction. Geometric multigrid and domain decomposition are highly success-
ful linear solver algorithms for matrices that arise from elliptic partial differential equations
(PDEs). Their success is based on the idea that simple iterative methods effectively re-
duce high frequency error components but have poor convergence rates on large wavelength
(small frequency) components of the error, which then asymptotically dominate the overall
convergence rate. More specifically, high frequency components of the error are reduced
quickly using an inexpensive iterative approach on the fine mesh, whereas low frequency
components are harder to dampen. Therefore, a way to accelerate the overall convergence
is to reinterpret low frequency terms on a fine mesh as high frequency terms on a coarse
mesh. To do this, a correction equation is projected to a coarse mesh after first applying
a simple iterative technique. When the idea is applied recursively (to approximately solve
the coarse mesh problem), a hierarchy of meshes of different resolutions results, and each
grid has a version of the same PDE operator [12, 13, 16, 21].

The domain decomposition idea is to replace an original PDE problem defined on a large
domain with multiple PDE problems defined on smaller regions [17, 18]. Different options
to choose subdomains and boundary conditions of the surrogate problems are viable, but
they must satisfy compatibility criteria with the original problem. Replacing a large prob-
lem with smaller ones is appealing as the smaller problems can be addressed concurrently.
DD methods often include a coarse grid phase (similar to GMG) in addition to the local
subdomain solves. In this way, DD methods can be derived so that convergence rates do
not deteriorate significantly as the mesh is refined or the number of subdomains increases.
A coarse solve is typically performed in a multiplicative fashion. That is, the subdomain
solves are performed simultaneously, residuals are then computed followed by the coarse
solve. The size of this coarse level problem is typically on the same order as the number of
subdomains.

While multigrid and domain decomposition are now quite mature, new computing archi-
tectures give rise to new challenges, as communication complexity increases and data/hard-
ware contention can impact heavily the performance of current techniques on future ma-
chines. In the context of multilevel solvers, coarse level processing can lead to parallel
inefficiencies due to the sequential nature in which grids are processed and the fact that less
concurrency is possible when processing coarse meshes. These issues motivate investigat-
ing a more efficient way to compute multigrid and domain decomposition preconditioners,
aiming to preserve simultaneously convergence rates of multiplicative approaches and high

∗Emory University, massimiliano.lupo.pasini@emory.edu
†Sandia National Laboratories, rstumin@sandia.gov
‡Sandia National Laboratories, jhu@sandia.gov
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concurrency of additive ones. If possible, this would open a path to exploit fully the po-
tential offered by upcoming architectures. The new proposed DD approach is based on a
technique already tested in the context of algebraic multigrid (AMG) in [20].

2. Mathematical framework. The problems analyzed in this paper are elliptic par-
tial differential equations of the general form

{
L(u) = −∇ · (a(x)∇u) + b(x) · ∇u+ c(x)u = f in Ω

u = g on ∂Ω
(2.1)

where Ω ⊂ Rd (d = 1, 2, 3) is an open and convex set. The functions a(x), b(x), c(x), f
and g are given and one seeks to determine u.

Assuming the PDE problem is well posed [14] and that it is recast in finite dimension
with a discretization technique [15] (such as Galerkin finite elements, finite differences or
finite volumes), the discrete analogue to Eq. 2.1 is the linear system

Ahuh = fh, (2.2)

where Ah ∈ Rn×n is the discretization of the differential operator L, uh is the discretization
of the solution u, fh ∈ Rn is the discretization of the forcing term f and n is the number of
degrees of freedom. The mesh spacing between adjacent grid points associated with Eq. 2.2
is denoted by h. We also introduce the discretization of the problem on a coarser grid with
a mesh spacing H:

AHuH = fH , (2.3)

where AH ∈ RN×N , uH ∈ RN , fH ∈ RN and N is the number of degrees of freedom for the
coarser mesh.

3. Geometric multigrid setting. Multigrid algorithms exploit the solution to the
same problem associated with different grid refinements to effectively dampen different fre-
quencies of the error [13, 21]. Restriction and interpolation operators are necessary to relate
vectors associated with different mesh refinements. To this goal, let us define an interpo-
lation operator IhH ∈ Rn×N and a restriction operator IHh ∈ RN×n. In the framework of
GMG, Eq. 2.2 and Eq. 2.3 often satisfy two variational properties:

AH = IHh AhI
h
H (Galerkin condition),

IhH = k(IHh )T k ∈ R.

The idea behind GMG is to relax Eq. 2.2 (i.e., approximately solve Eq. 2.2 via a simple
iterative scheme) and relax/solve Eq. 2.3 alternatively in a complementary fashion where
high frequency errors are primarily reduced by relaxation of Eq. 2.2 while low frequency
errors are damped by computations with Eq. 2.3. While these steps can be accomplished
and combined in different ways (e.g., via recursion to “solve” the coarse equations), we
consider the single two-level technique shown in Algorithm 3.1.
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Algorithm 3.1 Two-level multiplicative multigrid correction
Relax on Ahuh = fh
Compute fH = IHh (fh −Ahuh)
Solve AHuH = fH
Correct uh = uh + IhHuH

4. Domain decomposition setting. Domain decomposition preconditioning parti-
tions a domain of interest into multiple regions to generate surrogate problems [15, 17, 18].
Approximated solutions to the surrogate problems are used in an iterative fashion until a
matching criterion associated with the original problem is met.

There are multiple ways to partition the domain and to set up the surrogate problems.
However, we omit these details (see [15, 17, 18] for further information) and restrict our
attention to elliptic Dirichlet boundary value problems such as Eq. 2.1 with non-overlapping
domain decomposition.

Consider a collection of subdomains {Ωi}pi=1 partitioning Ω such that

Ω =
p⋃
i=1

Ωi.

Such a partitioning of Ω allows one to define a family of differential problems{
L(ui) = −∇ · (a(x)∇ui) + b(x) · ∇ui + c(x)ui = fi in Ωi

ui = gi on ∂Ωi
, i = 1, . . . , p. (4.1)

Discretizing each with ni degrees of freedom leads to the linear systems

Aiui = fi, i = 1, . . . , p. (4.2)

Moreover, introducing binary restriction operators Ri to map mesh vertices in Ω to the
subset of mesh vertices in Ωi, we obtain

Ai = RiAR
T
i , i = 1, . . . , p.

In practice, the Ri ∈ Rni×n are rectangular matrices resulting from permuting a subset of
rows of identity matrices. Defining

Bi = RTi (RiARTi )−1Ri,

we can formulate an additive Schwarz fixed point method to solve Eq. 2.2 as follows:

u`+1 = u` +
p∑
i=1

Bi(f −Ahu`) (4.3)

where u` is the approximated solution at the `th iteration of the fixed point scheme.
Equation 4.3 can be reinterpreted as a preconditioned Richardson scheme where the

preconditioner acting on the residual f −Au` is

BDD =
p∑
i=1

Bi.
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5. Two-level Schwarz preconditioner. The convergence rate of the additive Schwarz
preconditioner can often be accelerated by introducing a coarse grid correction (similar to
the GMG method) [15, 17]. Algorithm 5.1 and Algorithm 5.2 illustrate two possible mul-
tiplicative two-level methods. In Algorithm 5.1 the coarse correction is computed first,
followed by the application of the BDD operator. Algorithm 5.2 reverses the order of these
two steps.

Algorithm 5.1 Two-level Schwarz preconditioner 1
Input (vector to precondition): r
Compute v = IhHA

−1
H IHh r

Compute v = v +BDD(r−Ahv)
Output: v

Algorithm 5.2 Two-level Schwarz preconditioner 2
Input (vector to precondition): r
Compute v = BDDr
Compute v = v + IhHA

−1
H IHh (r−Ahv)

Output: v

Mathematically, these can be written as

B = BDD + (I −BDDAh)IhHA
−1
H IHh (5.1)

and

B = BDD + IhHA
−1
H IHh (I −AhBDD). (5.2)

respectively. We choose to apply Eq. 5.1 for this paper.
As noted, the main concern for multiplicative schemes is the sequential nature of the two

stages and the fact that the coarse problem has much less concurrent work. Although Algo-
rithm 5.1 and similar multilevel formulations have already been investigated extensively, we
aim to rewrite such a scheme through an unconventional formulation. The goal is to recast
Algorithm 5.1 so that it formally appears as a purely additive scheme, as additive precondi-
tioners have greater potential concurrency than multiplicative ones. By recasting Algorithm
5.1 in a completely equivalent formulation, the convergence rate should be identical to the
multiplicative version.

To this goal, we introduce a smoothed prolongation operator mimicking the process
shown by Vassilevski and Meier Yang in [20]:

I
h

H = (I −BDDAh)IhH (5.3)

which is essentially the highly successful smoothed aggregation prolongator introduced by
Vanek in [19]. The construction of a smoothed prolongator usually starts by decomposing
the set of grid nodes into small subsets to define a tentative often piecewise-constant inter-
polation operator (in the discrete sense). The tentative piecewise-constant prolongator is
then smoothed to obtain the final prolongator.

Introducing the smoothed interpolator Eq. 5.3 allows us to interpret the Two-Level
Schwarz preconditioner in Eq. 5.1 as

B = BDD + I
h

HA
−1
H IHh . (5.4)



44 Additive Two-Level Schwarz Preconditioners

Note the additive nature of Eq. 5.4 and its similarity with the standard Two-Level Additive
Schwarz preconditioner [17]

Badd = BDD + IhHA
−1
H IHh . (5.5)

The difference between Eq. 5.4 and Eq. 5.5 is that the two-level additive Schwarz precon-
ditioner uses the standard IhH , whereas in Eq. 5.4 a smoothed interpolator I

h

H is employed.
The smoothing operator is the iteration matrix (I−BDDAh) of the DD fixed point iterative
solver. The special interpolator I

h

H allows one to recover the favorable convergence rate of
a multiplicative method, though it does incur some expense to form I

h

H and to apply I
h

H ,
which contains more nonzeros than IhH .

6. Approaches to apply the preconditioner. Algorithm 6.1 presents high-level
code to implement Eq. 5.4 that requires one to build explicitly the smoothed interpolation
operator I

h

H = (I − BDDAh)IH . The hope is that the cost to build I
h

H , which needs be
done just once in the preconditioner setup phase, will be offset by a significant reduction of
the run-time phase by performing A−1

H concurrently with the BDD subdomain solves. The
run-time reduction could thus compensate and amortize the time spent to precompute the
smoothed interpolator explicitly.

Algorithm 6.1 Modified approach
Input (vector to precondition): r
Compute v1 = BDDr // concurrent
Compute v2 = I

h

HA
−1
H IHh r // concurrent

Compute v = v1 + v2
Output: v

6.1. Construction of the smoothed interpolation operator. To accurately assess
the potential of Algorithm 6.1, the time spent on the explicit construction of the smoothed
interpolation operator I

h

H should be minimized. Recalling Eq. 5.3, we notice that two
matrix-matrix multiplications are necessary to compute BDDAhIhH . Both the size of each
matrix and their sparsity patterns must be considered. Since IhH ∈ Rn×N and usually
N � n, this matrix consists of a relatively small number of columns. This motivates
computing AhI

h
H first, as the result also contains only a few columns. For now we apply

this matrix-matrix multiply naively, without specifically exploiting the column structure of
IhH . Once AhIhH is computed we premultiply this quantity by the domain decomposition
preconditioner BDD. In this case we exploit the sparsity pattern of BDD, AhIhH and of the
resulting matrix BDDAhIhH . Such a matrix-matrix multiply can be decomposed additively
as follows:

BDDAhI
h
H =

p∑
i=1

[Bi(AhIhH)]. (6.1)

Clearly each term of the sum can be computed independently. Moreover, since the Bi’s are
domain decomposition preconditioners associated with subdomains, each of them operates
on a subset of the rows in AhIhH . This allows one to decrease significantly the communication
cost and memory storage to carry out each of the products Bi(AhIhH).
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6.2. Domain ordering (coloring). To simplify the algorithms we consider struc-
tured Cartesian meshes with one aggregate per subdomain. Therefore there is a one-to-one
correspondence between subdomains partitioning the fine mesh and nodes of the coarse
mesh. This implies that the number of subdomains is equal to the number of columns in
IhH .

The implementation described in Section 7 requires the application of BDD to a matrix
stored in a dense, rather than a sparse format. This is due to software limitations in
Ifpack2 [5]. For efficiency in computing Eq. 6.1, we thus want to minimize the number
of times the domain decomposition preconditioner BDD is applied to AhI

h
H saved as a

dense matrix. One possible option colors subdomains that can be processed independently
with the same color as shown in Figure 6.1. In doing this, one must consider the stencil
expansion each column undergoes due to the matrix-matrix multiply AhIhH and the domain
decomposition step Bi(AhIhH). One must ensure that subdomains (or equivalently matrix
columns) with the same color are associated with non-overlapping columns of the final I

h

H .
Specifically, if two columns of BiAhIhH do not have any nonzero entries in the same rows,
then they can belong to the same color and be computed simultaneously by “condensing”
these columns into a single column. Repeating this idea for each color, which includes a set
of columns that do not have nonzero entries in the same rows, is equivalent to building a
condensed form of AhIhH , denoted by C(AhIhH). The construction of C(AhIhH) is is executed
by compressing directly IhH , followed by multiplying Ah and the compressed version of IhH .
The number of columns in C(AhIhH) is equal to the number of colors. One can then apply
BDD to C(AhIhH). As there are far fewer columns, there are far fewer applications of BDD.
The resulting BDDC(AhIhH) matrix can then be uncondensed to recover BDDAhIhH . Figure
6.1 provides a concrete example of this compression process.

Fig. 6.1: Prolongator compression using subdomain coloring of a horizontally partitioned
mesh.

Assuming no overlap among subdomains, and no overlap within the IhH columns, the
minimal number of colors is 3d, where d is the spatial dimensional of the PDE problem.
As illustrated in Figure 6.2, the fine mesh is partitioned into two-dimensional bricks. Each
brick represents a subdomain, and all nodes on the fine mesh associated with a brick are
aggregated to a single node on the coarse level. For this work, which is still at a proof-of-
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concept stage, we assume the brick-shaped aggregates have the same size in each dimension.
Subdomains with the same color are then assigned to the same column of the collapsed
operator. In our specific context 3d colors are needed. However in more complex cases (e.g.,
overlapping subdomains), the same idea could be applied but more colors would be needed.

Fig. 6.2: Coloring scheme for two-dimensional structured Cartesian meshes partitioned with
brick-shaped subdomains without overlapping.

6.3. Memory storage and operation counts. Algorithms 5.1 and 6.1, though
mathematically equivalent, have different storage and computation characteristics. Table
6.1 reports the resources needed to apply the preconditioner. Every time a solution to a
linear system is computed, we assume that such a solution is obtained by solving directly
two linear systems involving LU factors.

Concerning memory storage, both approaches require saving the LU factors of the DD
preconditioner, the DD restriction operators, and the LU factors of the stiffness problem
on the coarse grid. The standard approach requires storing the regular restriction and
prolongation operators, whereas the modified approach replaces the standard prolongation
operator with the smoothed interpolator I

h

H . Since the smoothed prolongation I
h

H is the
result of a matrix-matrix multiply, we expect fill in with respect to the sparsity of IhH . In
our context we expect the number of nonzeros nnz(I

h

H) ≈ 9 · nnz(IhH) in 2D when the
discretization stencil corresponds to a nine point stencil. In particular, each column of
IhH is nonzero only within one sub-domain while the nonzeros in each column of I

h

H also
extend over the eight nearest neighbor subdomains of a central subdomain. In 3D we expect
nnz(I

h

H) ≈ 27 · nnz(IhH). Notice that the modified approach does not require that Ah be
stored since the computation of the residual is not necessary, though typically an outer
Krylov method would require this.

While requiring additional memory, the modified approach does not require a matrix-
vector product with Ah, though the matrix-vector product with I

h

H is likely more expensive
than one with IhH needed for the standard approach.
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Standard approach Modified approach

Memory

p∑
k=1

[nnz(Lk) + nnz(Uk)]+

p∑
k=1

nnz(Rk)+

nnz(LH) + nnz(UH)+

nnz(IHh ) + nnz(IhH)+
nnz(Ah)

p∑
k=1

[nnz(Lk) + nnz(Uk)]+

p∑
k=1

nnz(Rk)+

nnz(LH) + nnz(UH)+

nnz(IHh ) + nnz(I
h

H)

Matrix - vector

MV (IhH) +MV (IHh )+

2
p∑
k=1

MV (Rk) +MV (Ah)

MV (I
h

H) +MV (IHh )+

2
p∑
k=1

MV (Rk)

Direct solves
p∑
k=1

[DS(Lk) +DS(Uk)]
p∑
k=1

[DS(Lk) +DS(Uk)]

Table 6.1: Estimation of the memory storage and number of algebraic operations needed
to apply the Two-Level Schwarz preconditioner according to different approaches. Matrices
Lk and Uk are the LU factors of the matrix Ak discretizing the stiffness operator on a
subdomain, and Rk is the binary projection operator associated with a subdomain. LH and
UH are the LU factors of the coarse grid stiffness matrix AH .

7. Implementation. The modified approach presented in Section 6 has been imple-
mented in C++ using a Trilinos linear algebra framework [11] with an MPI environment
for distributed memory parallelization [7, 9]. The main Trilinos packages include Tpetra
[10], Galeri [4], Ifpack2 [5], MueLu [8] and Belos [1].

The package Tpetra is employed for the instantiation and handling of matrix and mul-
tivector structures, along with the construction of maps to partition data across the multi-
process computational environment. Galeri has been extended to provide two-dimensional
and three-dimensional advection-diffusion-reaction elliptic problems discretized with cen-
tered finite differences. Ifpack2 is necessary to build I

h

H and to apply the overall domain
decomposition cycle. MueLu is employed to set up the Two-Level Schwarz preconditioner
used at each iteration of the iterative solver constructed with the Belos package.

Since the project goal is to recast the multiplicative Two-Level Schwarz preconditioner in
an additive form to apply concurrently fine smoothing and the coarse correction, the V-cycle
(see [13]) called Iterate in MueLu is rewritten. Iterate belongs to the templated class
named MueLu::Hierarchy. Rewriting is necessary because the MueLu version employs
recursion for the V-cycle, preventing different levels from being computed simultaneously.
Also, reimplementing Iterate requires partitioning data and tasks among the processes
in a different way from what is done conventionally, as illustrated in Figure 7.1. The idea
behind our approach is to instantiate a total of P + 1 processes with ID’s from 0 to P at
the fine level via a global MPI communicator. However, the data associated with the fine
level are uniformly partitioned only among the processes with ID from 1 to P , leaving the
master process with ID 0 free to take care of the coarse correction. Such a configuration
allows one to operate concurrently fine level smoothing and coarse grid correction.

The data partitioning at the fine level is constructed manually via Tpetra::Map needed
for Tpetra::CrsMatrix and Tpetra::MultiVector objects. Since the coarse level is
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Fig. 7.1: Task partitioning for Two-Level Schwarz preconditioners.

managed just by one process, a repartitioning of the data is carried out to allow process 0
to be in charge of everything on that level. MueLu’s repartitioning capabilities are used to
assign the entire coarse level problem only to process 0.

A high level sketch of MueLu::Hierarchy::Iterate is reported here below.

template <...>
ReturnType Hierarchy < . . . > : : I t e r a t e ( . . . ) {
. . .

RCP<Level> Fine = L e v e l s [ 0 ] ;
RCP<Level> Coarse ;
RCP<Operator> A = Fine−>Get< RCP<Operator> >(”A” ) ;

// i f coarse l e v e l
i f ( L e v e l s . s i z e ()>1 ) {

Coarse = L e v e l s [ 1 ] ;
R = Coarse−>Get< RCP<Operator> >(”R” ) ;
P = Coarse−>Get< RCP<Operator> >(”P” ) ;
R−>apply (B, * coarseRhs , Teuchos : : NO TRANS, one , ze ro ) ;
. . .
Ac = Coarse−>Get< RCP< Operator > >(”A” ) ;
. . .
}

// i f f i n e l e v e l
i f ( Fine−>I s A v a i l a b l e ( ”PreSmoother” ) ) {

. . .
preSmoo−>Apply (* f ineX , B, zeroGuess ) ; // app ly B DD
. . .

}
. . .

// i f coarse l e v e l
i f ( L e v e l s . s i z e ()>1 ) {

i f ( Coarse−>I s A v a i l a b l e ( ”PreSmoother” ) ) {
// app ly AHˆ−1 in our c o n t e x t
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preSmoo coarse−>Apply (* coarseX , * coarseRhs , . . . ) ;
. . .

}
. . .

P−>apply (* coarseX , * coarseX prolonged , . . . ) ;
}
// X update sums components
X. update ( 1 . 0 , * f ineX , 1 . 0 , * coarseX prolonged , 0 . 0 ) ;
. . .

}

8. Numerical results. The performance of the standard and modified approaches
are tested on the three-dimensional elliptic problem given by Eq. 2.1 with homogeneous
Dirichlet boundary conditions. The domain is chosen to be Ω = [0, 6]× [0, 6]× [0, 6], and the
equation coefficients are set to a(x) = 1, b(x) = [10, 10, 10]T , c(x) = 0 and f(x) = 1. The
discretization of the PDE is carried out via seven-point stencil centered finite differences.
The actual size of the problem varies according to the number of nodes employed to discretize
the domain.

Simulations are run on Edison, a National Energy Research Scientific Computing Center
(NERSC) supercomputer [3]. This supercomputer is a Cray XC30 [2], endowed with 5,576
nodes. Each node has two sockets and each socket is populated with a 12-core Intel “Ivy
Bridge” processor [6] at 2.4 GHz, for a total of 24 cores per node.

A Two-Level Schwarz preconditioner is employed, where the fine smoothing is computed
with a domain decomposition approach. Each subdomain solve and the coarse solve are ap-
proximated via an incomplete LU factorization (ILUK) with a level of fill-in equal to 10 [16].
This large level of fill was chosen to mimic a standard sub-domain direct solver that was
not available at the time of this project. The outer Krylov method is BiCGSTAB [16] as
implemented in Belos. The Two-Level Schwarz is employed as right preconditioner and a
threshold of 10−10 is imposed on the relative residual as stopping criterion for BiCGSTAB.
Simulations are run so that different subdomains are given to different cores without resort-
ing to any threading. For each configuration, the number of allocated nodes is the minimal
necessary to have enough cores available. This minimizes communication cost as 24 cores
reside on the same node. All the results are averaged over 2 runs.

We first fix the problem size to 27, 000, 000 degrees of freedom employing a discretization
with 300× 300× 300 nodes. Regarding the standard approach, we monitor the time spent
to apply the restriction, the prolongation, the coarse solve, the smoothing at the fine level,
the computation of the residual between fine and coarse level and the total time spent in the
MueLu::Hierarchy::Iterate. Table 8.1 reports the maximal time spent across all the
processes in seconds. For the modified approach, we additionally monitor the time spent
to build I

h

H , the time spent to apply I
h

H , and the time to add the contributions of the two
levels. In Table 8.2 the maximal time spent across all the processes is reported in seconds.

#domains sub. size IHh IhH A−1
H BDD residual Iterate

216 50× 50× 50 0.31 0.2 0.03 27.2 0.9 28.5
1,728 25× 25× 25 0.06 0.02 0.23 3.39 0.1 7.29
3,375 20× 20× 20 0.03 0.01 0.49 1.64 0.52 14.8

Table 8.1: Timings in seconds for standard approach.
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#dom. sub. size IHh Set I
h

H I
h

H A−1
H BDD sum Iterate

216 50× 50× 50 0.25 3.95 1.92 0.04 26.5 0.1 28.5
1,728 25× 25× 25 0.02 0.78 0.35 0.23 3.27 0.02 4.45
3,275 20× 20× 20 0.01 0.58 0.26 0.5 1.55 0.01 14.39

Table 8.2: Timings in seconds for modified approach. The column “Set I
h

H” shows the time
spent in computing I

h

H , whereas the column “I
h

H” shows the timings spent in applying the
smoothed interpolator.

The comparison between Tables 8.1 and 8.2 shows that the additive approach is not
faster using 216 or 3,375 subdomains. In the former case the size of the subdomains is
too big relatively to the size of the coarse mesh. Therefore an excessive computational
imbalance hinders any timing improvement. In the latter case the opposite situation oc-
curs, since the number of processes involved is too high and the timings are dominated
by communication overhead (not reported in the tables). In fact adding all the timings
of the columns associated with the computational steps we obtain a value much smaller
than the total time spent for the MueLu::Hierarchy::Iterate. However, resorting to
1,728 subdomains the additive approach reduces the timings almost by a factor of two with
respect to the multiplicative variant. This suggests that an actual improvement may be
obtained if the computation and communication loads are properly distributed across the
processes. Generally, load balancing is more complex with the additive variant, as it must
account for the fact that different processors execute different algorithm sub-components
(with different work requirements). The most expensive communication comes from the
transfer operators. For restriction, processes from 1 to P need to communicate their own
portion of the restricted right hand side to process 0 to compute the coarse correction. In
the prolongation the reverse occurs since process 0 has to redistribute the prolonged coarse
correction to processes from 1 to P . To validate the effectiveness of the additive variant, one
should choose the global size of the problem and of each subdomain so that the computation
dominates over the communication. More specifically, it would be preferable if the domain
decomposition step were computed concurrently with the time spent by process 0 to receive
the restricted right hand side and the actual coarse computation. Unfortunately, we could
not validate these conjectures due to limited computational resources.

We also investigated performance by fixing the size of each subdomain to 25×25×25 and
varying the total number of subdomains/processors (and hence the total number of d.o.f’s)
in a weak scaling fashion. In Table 8.3 we report results for the multiplicative variant
whereas results for the additive variant are presented in Table 8.4. Here, the additive
scheme outperforms the multiplicative one for the intermediate configurations. For the
extreme cases the performance of the two approaches is similar. Also in this case using
3,375 causes most of the time to be spent for the communication. In fact adding up the
timings for the computational step results in a value much smaller than the total time
spent int the MueLu::Hierarchy::Iterate method. It is likely that again poor load
balancing and poor computation to communication ratios limit the run time benefit of the
additive variant.
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#d.o.f’s #subdomains IHh IhH A−1
H BDD residual Iterate

150× 150× 150 216 0.03 0.01 0.02 1.72 0.05 1.86
225× 225× 225 729 0.04 0.01 0.07 2.6 0.09 3.72
300× 300× 300 1,728 0.06 0.02 0.23 3.39 0.1 7.29
375× 375× 375 3,375 0.06 0.02 0.58 4.8 0.17 23.39

Table 8.3: Timings in seconds for standard approach.

#d.o.f’s #dom. IHh Set I
h

H I
h

H A−1
H BDD sum Iterate

150× 150× 150 216 0.08 0.48 0.16 0.02 1.65 0.01 1.82
225× 225× 225 729 0.01 0.59 0.26 0.07 2.6 0.01 2.82
300× 300× 300 1,728 0.02 0.78 0.35 0.23 3.27 0.02 4.45
375× 375× 375 3,375 0.02 1.16 0.56 0.5 3.79 0.02 22.5

Table 8.4: Timings in seconds for modified approach. The column “Set I
h

H” shows the time
spent in computing I

h

H , whereas the column “I
h

H” shows the timings spent in applying the
smoothed interpolator.

9. Conclusions and future developments. We have investigated additive variants
that are theoretically equivalent to the standard multiplicative Two-Level Schwarz algo-
rithm. The goal is to enhance concurrency to improve performance of multilevel algorithms
on upcoming computing architectures. We provided the mathematical framework and de-
scribed approaches to implement the preconditioner, highlighting the key steps of the ad-
ditive variant. The experiments show that an additive approach can leverage concurrency
to reduce the total computational time. However, obtaining the proper load balance via a
careful choice of problem size and number of subdomains can be challenging.

A prospective development may consist of employing direct solves for the domain de-
composition smoother and for the coarse grid correction in place of the incomplete LU
factorization adopted here. Moreover it may be worth investigating the performance of
the preconditioners when multiple processes are in charge of computing the coarse grid
correction.
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HYBRID MULTIGRID METHODS FOR NEARLY STRUCTURED
MESHES

PETER B. OHM∗ AND RAYMOND S. TUMINARO†

Abstract. Multigrid methods have been developed for both structured and unstructured grids [2]. In
terms of exascale computing, memory, and setup time, there are significant potential advantages to struc-
tured mesh approaches over unstructured schemes. Further, multigrid algorithms that take advantage of
structure can exhibit superior convergence rates when compared with their unstructured multigrid coun-
terparts. Unfortunately, the types of applications that can be addressed with structured meshes are quite
limited. In many circumstances, however, an application may only require complex unstructured meshes
within small sub-regions of the overall domain to accurately capture important physical features. For these
applications, we aim to develop multigrid methods that can leverage the structure present over most of the
domain while employing more general techniques only within regions where complex unstructured meshes
are truly needed.

1. Introduction. This paper considers multigrid solvers for applications where the
underlying mesh contains both structured and unstructured regions. We are specifically
interested in developing a multigrid algorithm that can leverage structure even if the mesh
is only structured within a region of the entire domain. Figure 1.1 provides an illustration
of a mesh with regions that are both structured (the outer ring) and unstructured (the
inner circle). The target application is one where most of the computational domain is
covered by structured mesh, but there are a few sub-regions requiring some unstructured
mesh treatment. This is quite common in many situations.

Fig. 1.1: Example of a hybrid mesh. The “structured” region is the region with the quad
elements, while the “unstructured” center region is the region with the triangular elements

For structured regions one can employ a structured mesh multigrid algorithm. In this
paper, we consider a multigrid algorithm that coarsens by factors of three in both dimen-
sions of a logically structured mesh and derives grid transfer basis functions by a black box
type matrix dependent algorithm [3]. Within the unstructured regions, a fully unstructured
Algebraic Multigrid (AMG) algorithm is employed with the following exception: at the in-
terfaces between structured and unstructured regions, we require that the set of coarse AMG

∗Tufts University, peter.ohm@tufts.edu
†Sandia National Laboratories, rstumin@sandia.gov
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points be identical to the set of coarse points required by a structured multigrid algorithm.
The use of structured multigrid within the structured region offers two primary potential
advantages. The first advantage is algorithmic in that certain structured techniques can
be applied on all grid levels of the hierarchy. This is demonstrated for an application con-
taining a highly anisotropic mesh within the structured region, as shown in Figure 1.1. In
this case, line relaxation can be employed within the structured region to effectively smooth
errors during the iterative process in all directions despite the anisotropic mesh. A second
potential advantage to the preservation of structure within a multigrid hierarchy might be
realized on future architectures. In particular, structured multigrid gives rise to less nonzero
fill-in on coarse grids (which corresponds to less communication), less indirect addressing
(which corresponds to less bandwidth), and more regularity in the computations (which can
be advantageous on GPUs). This second advantage will be explored in a future paper.

The paper proceeds as follows. Multigrid algorithms are described for regular meshes
in Section 2. This includes a brief summary of Hierarchical Hybrid Grid (HHG) approaches
that consider somewhat more complex domains by viewing them as the union of a set of
structured regions. Smoothed aggregation multigrid is then summarized in Section 3. The
hybrid mesh multigrid algorithm is described in Section 4, focusing on algorithmic modifi-
cations required at the interfaces between structured and unstructured meshes. Section 5
presents a computational illustration of the algorithmic advantages associated with preserv-
ing structure within the multigrid method for a sub-region of the mesh. Finally, conclusions
are given in Section 6.

2. Multigrid on Structured Grids. Multigrid was originally developed to solve
linear systems associated with elliptic partial differential equations (PDEs) on structured
grids and then later adapted to address different unstructured grid situations. The multigrid
method is the process of using a solution on the coarse grid to correct the solution on the
fine grid. It can be shown both theoretically and computationally that simple iterative
methods (e.g., Jacobi) are generally effective at removing high-frequency components of
error and relatively inefficient at removing low-frequency components of error. However,
low-frequency error components on the fine mesh appear as high-frequency error on the
coarse mesh. Passing the problem to the coarse grid not only reduces the problem size, it
also transforms the low-frequency error to high-frequency error on the coarse mesh where
it can be more easily eliminated [2].

Here we lay out a basic multigrid procedure. First, one must construct the prolongation
matrix P that maps from the coarse grid to the fine grid. Further, a restriction operator, R,
is needed to map residuals from the fine grid to the coarse grid. Often, R = αPT where α is
a scalar (α = 1 in this paper). Overall, the general idea is that R and P should accurately
transfer smooth functions. Additionally, a discretization of the original PDE problem is
needed on the coarse mesh. This can be developed by applying the same discretization
technique to the coarse mesh that was originally employed on the fine mesh. Alternatively,
one can use a Galerkin style projection and take the coarse discretization to be the result of
the triple matrix product RAP . Algorithm 2.1 illustrates a basic two level multigrid method
where R = PT and the coarse discretization is PTAP . The pre- and post- smoothing shown
in Algorithm 2.1 corresponds to a Jacobi algorithm where D is the diagonal of matrix A and
ω is a damping parameter between 0 and 1. Smoothing updates the current approximation
to the solution and generally damps out high-frequency components of the error so that the
error in the resulting approximation is smooth. Smoothness is normally required in order to
accurately represent this error on a coarse mesh. In practice an approximation to the coarse
level solution can be obtained through repeated recursive application of Algorithm 2.1 until
one reaches a coarse level problem small enough that it can be solved with a direct method.
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Algorithm 2.1 Basic Two-Level Multigrid, solving Au = b

Pre-smoothing u = u+ ωD−1(b−Au)
Compute fine grid residual rh = (b−Au)
Restrict to coarse grid r2h = PT rh

solve (PTAP )e2h = r2h

Interpolate coarse grid error the fine grid eh = Pe2h

Correct fine grid solution u = u+ eh

Post-smoothing u = u+ ωD−1(b−Au)

As noted above, multigrid was initially developed for structured meshes. In this case,
the application typically supplies a hierarchy of structured meshes. Typically the spacing
between mesh points on the `th mesh is taken as h` = 2(`−1)h1 where the finest mesh
corresponds to ` = 1 with a mesh spacing of h1.

Prolongation matrices are needed to map solutions between different levels of the hi-
erarchy. This prolongation matrix is generally quite sparse and could be based on bi- or
tri-linear interpolation (in two and three dimensions), which is easily derived for a structured
mesh. In this case, linear functions on the coarse mesh are exactly transferred to the fine
mesh. Alternatively, matrix dependent multigrid algorithms such as the well known black-
box multigrid scheme [3] have been defined for structured meshes. These matrix dependent
algorithms define grid transfer operators using only the matrix coefficients. In this sense
they are similar to algebraic multigrid (AMG). However, unlike AMG, matrix-dependent
multigrid requires that both the fine and the coarse mesh be structured. In this paper, we
employ a matrix dependent scheme that has been adapted from [6] so that a coarsening fac-
tor of three is used in each dimension (i.e., h` = 3(`−1)h1). Figure 2.1 depicts a structured
fine mesh. The colored nodes can be used to define a coarse mesh where the mesh spacing
between colored nodes is three times that of the fine mesh spacing.

Fig. 2.1: Example structured mesh. The coarse nodes, represented with red diamonds,
define a coarse mesh where the mesh spacing between coarse nodes is three times that of
the fine mesh spacing.

Structured mesh multigrid algorithms have several advantages for exascale compute
systems and in terms of convergence. For exascale systems, the regularity of structured
meshes allows the use of stencil based algorithms avoiding the need to explicitly assemble a
discretization matrix and it is easier to construct a partitioning of the mesh for paralleliza-
tion. Additionally, there is less nonzero fill-in on coarse grids and less indirect addressing.
Structured mesh multigrid can also exhibit significantly better convergence properties than
more general purpose AMG methods in certain situations. From our experience, this is most
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likely to occur when there is a certain directionality to the underlying problem that is aligned
with the mesh. This might be an interface, some anisotropic phenomena, characteristics for
hyperbolic problems, boundary layers, or mesh stretching. Additionally, structured mesh
multigrid methods can employ line relaxation on all levels of a multigrid hierarchy. Line
relaxation has well known convergence benefits for anisotropic problems and is a valuable
multigrid tool when employing structured grid multigrid.

Several algorithms have been proposed to extend the applicability of structured mesh
algorithms (e.g., using a set of overlapping structured meshes to cover an irregular domain
or to adapt the mesh resolution to sub-regions requiring greater accuracy). The Hierarchical
Hybrid Grids (HHG) method is probably the closest generalization of structured mesh ideas
to the approach considered in this paper. Hierarchical Hybrid Grids (HHG) are formed
from the regular refinement of a coarse grid. The result is a HHG grid hierarchy containing
regions of structured mesh, even if the initial coarse mesh was unstructured [1]. Each region
in an HHG mesh corresponds to one element of the original coarse mesh that has been
uniformly refined. Figure 2.2 illustrates the regular refinement of a mesh composed of a
triangle and a square.

Fig. 2.2: Example of regular refinement of a mesh

One can use finite element techniques to discretize a PDE on an HHG mesh. The main
difference is that it is natural within an HHG implementation to assemble the individual
stiffness matrices within each region to form one partially assembled matrix for each re-
gion. Thus, there are multiple copies of unknowns along regional interfaces (one for each
region containing the unknown). In this way, the partially assembled matrices along shared
interfaces appear locally as Neumann boundary conditions (as contributions to degrees-
of-freedom on the shared interface have not been assembled). Mathematically, the HHG
discretization and the use of a structured multigrid method is completely equivalent to
having formed a standard finite element discretization and applied a structured multigrid
algorithm to the fully assembled matrix. However, it is natural to implement the method
in a region oriented fashion with some kernels that are applied to a sub-assembled matrix
or to vector subsets defined on just one region. This means that the implementation must
additionally include some functions that account for interfaces and neighboring regions. For
example, functions are needed to sum or average sub-vector components associated with the
same shared degrees-of-freedoms. We omit the details but refer the reader to [1].

3. Algebraic Multigrid. Most algebraic multigrid methods work by using properties
of the fully assembled matrix to construct prolongation matrices. The development and
use of algebraic multigrid methods has been a major advancement in the solution of linear
systems associated with partial differential equations. This is because the extension of more
traditional geometric multigrid algorithms to highly unstructured complex applications can
be quite cumbersome, especially for application developers.
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Algebraic multigrid facilitates the use of multigrid methods within complex applica-
tions. However, it can potentially incur some additional costs and may be less robust than
a structured multigrid approach (though there are examples where an algebraic approach
can be more robust than a standard geometric multigrid method). In particular, the cost of
the setup phase for an algebraic method is typically much higher than that of a geometric
method. Coarse grid discretization stencils obtained via AMG can be significantly larger
than the fine grid discretization stencil. This is particularly problematic on highly concurrent
grids as large stencil widths typically imply greater communication requirements. The larger
stencils and the use of indirect addressing within unstructured applications also increases
memory bandwidth and decreases the regularity of memory access, which can also degrade
performance on some architectures. Additionally, applications that have features that are
naturally aligned with the coordinate directions of the mesh are often better captured by
coarse meshes that maintain this alignment. That is, structured mesh approaches have con-
vergence benefits for some types of applications. Furthermore, structured mesh approaches
can employ line relaxations techniques to further improve robustness and convergence rates.
Line relaxation techniques have well known convergence benefits for anisotropic problems,
but they can only be applied to structured meshes.

In this work we have considered both the smoothed aggregation method [7] and a
form of energy minimization algebraic multigrid [4, 5]. Here, we restrict our discussion
to the smoothed aggregation (SA) method as this is the more standard approach and is
the primary AMG method used in our experiments. The basic idea of all AMG methods
is to first interpret the matrix A as a graph. Each matrix row corresponds to one graph
vertex and an edge between vertices i and j exists if the corresponding matrix entry ai,j
is nonzero. An aggregation algorithm is applied to this graph. This algorithm groups
neighboring vertices into aggregates using some type of heuristic graph algorithm. The
aggregation algorithm used in this work essentially chooses an unaggregated vertex and all
of its immediate unaggregated neighbors to define an aggregate. Repeated application of
this process leads to a set of aggregates, Aj , such that intersection of any two aggregates is
empty and the union of all aggregates includes all graph vertices. The node aggregates are
used to define the tentative prolongator

P̂ij =

{
1, if i ∈ Aj
0, otherwise

(3.1)

that is then improved via

P =
(
I − 4

3ρ
D−1A

)
P̂ (3.2)

where I is the identity matrix, ρ is the spectral radius of A, and D is the diagonal of A.
For SA to produce an efficient prolongation matrix, the aggregates Aj need to be “nice”

aggregates in the sense that all aggregates should be approximately the same size and shape.
The basic idea behind the construction of the smoothed prolongation matrix is that P̂
defines a simple piecewise constant interpolation operator, which is not necessarily ideal.
However, the piecewise constant basis functions (i.e. the columns of P̂ ) can be smoothed
by applying the Jacobi-like iteration operator given in Equation 3.2. When aggregates are
chosen appropriately, an efficient multigrid method can be created (as can be shown both
theoretically and computationally for a wide class of elliptic PDE problems).

4. HHG and AMG. In many applications, it is not possible to use a structured mesh
nor is it possible to use an HHG mesh. That is, the original application can contain some
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features that are not easily resolved or captured with a structured mesh. However, it is quite
common that the features which complicate the use of structured meshes are restricted to
some small subset of the entire domain. For these cases, we seek to modify the HHG scheme
so that it allows for some unstructured regions. Specifically, we consider meshes that are
composed of multiple regions with some regions covered by structured meshes and other
regions covered by unstructured meshes.

The principle idea is to create a prolongation operator by applying a structured multigrid
algorithm (e.g., black-box multigrid) to the sub-assembled matrix associated with structured
regions and then apply an AMG algorithm to the sub-assembled matrix associated with the
unstructured regions. Effectively, this implies that some rows of the prolongation matrix
are determined by a black-box algorithm while other rows are determined by an AMG
algorithm.

The main non-trivial issue when combining AMG and structured mesh multigrid con-
cerns the treatment at the interface. In particular, one needs to make sure that coarse points
agree across an interface. The coarse points of the structured multigrid method must be
defined as a uniform coarsening of a structured mesh and so they are known for each level
of the mesh hierarchy. Thus, the AMG method must be adapted so that it has the same
coarse points at the interface as the structured method. These coarse points are effectively
the centroid of the aggregates discussed in Section 3. For SA we artificially aggregate the
shared interface separately from the rest of the region. The artificial aggregation is per-
formed so that the coarse points of the unstructured region agree with the coarse points of
the adjacent structured region as shown in Figure 4.1. This forces the stencil structure of

Fig. 4.1: Example of how the unstructured mesh was aggregated along a shared interface.
Coarse points on the structured region are represented by the black square dots. The
interface aggregates are circled in blue

the SA prolongation matrix to match the prolongation matrix of the structured multigrid.
While the nonzero patterns of the two prolongation matrices agree along the interface, the
actual coefficients associated with the stencils are different. As a consistent interpolation
operator is needed, one can consider averaging the interpolation operators or one can simply
take one of the interpolation operators to define the interface interpolation. In this paper,
we take the latter approach. Specifically, the prolongation matrix of the unstructured region
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is set to agree across the interface by overwriting the shared interface values with those of
the prolongation matrix in the structured region. It is important to notice that interpolation
at non-coarse interface points is completely in terms of coarse points only at the interface.
That is, interpolation at the interface does not depend on values from the interior of either
of the neighboring regions.

While not strictly necessary, it is desirable that the coarsening rates of both the AMG
and the structured multigrid methods are matched. In this way, the relative distance be-
tween coarse points within structured and unstructured regions is roughly the same through-
out the multigrid hierarchy. As the smoothed aggregation method generally coarsens by
factors of three in each dimension, the structured multigrid algorithm is also adapted so
that it coarsens by a factor of three in each dimension (as opposed to the more standard
factor of two in each dimension). This algorithm will be described in greater detail in a
future report.

As with the HHG method, applying the multigrid cycle to solve a system (e.g. via
Algorithm 2.1) is mathematically equivalent to applying multigrid to the entire assembled
discretization matrix, using hybrid grid transfers that have been created by combining both
structured and unstructured multigrid algorithms as described above. However, in practice
the cycle is applied in a region-oriented fashion using sub-assembled discretization matrices.
This region-oriented fashion is straightforward for most kernels but becomes complicated
when applying relaxation within the multigrid scheme. For example, both Jacobi and x-line
Jacobi relaxation can be written as

uk+1 = uk + ωD−1(b−Auk) (4.1)

where D is the matrix diagonal of the fully assembled matrix A in the Jacobi case. D
contains only fully assembled matrix entries that couple mesh nodes along x-lines in the
x-line Jacobi case. That is, the only non-zeros in D satisfy Di,j = Ai,j if i and j belong
to the same grid line oriented in the x direction. While the matrix-vector product, Au, is
easily performed using the sub-assembled region matrices, it is easiest to fully assemble the
matrix D so that it can be inverted within the Jacobi schemes.

5. Numerical Illustration. To demonstrate the overall approach, a Poisson-like prob-
lem is solved on a circular domain. Specifically, consider

(ρ(x, y)ux)x + (ρ(x, y)uy)y = f (5.1)

with u(x, y) = 0 for x2 + y2 = 9, and

f(x, y) =

{
1, for ((x− 1)2 + (y − 1)2) ≤ (1.25)2

0, otherwise

ρ(x, y) =

{
100, for (1.9)2 ≤ (x2 + y2) ≤ (2.1)2

1, elsewhere

Meshes such as the one depicted in Figure 1.1 are employed. Notice the regular but non-
uniform mesh spacing that is used to capture the interface associated with the discontinuity
in ρ(x, y). The problem is discretized by a general finite element strategy that includes both
quadrilateral elements and triangular elements. As with HHG, the discretization matrices
are sub-assembled for each region by a general linear nodal finite element strategy.

A simple meshing algorithm was developed to alter the mesh spacing between rings in the
structured region, providing us with some ability to experiment with different mesh aspect
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ratios. The disk mesh and non-uniform mesh spacing are used to highlight the advantages
of using a hybrid structured and unstructured multigrid method. The center of the disk is
treated as unstructured while the outer ring is structured. The outer ring uses a black-box
multigrid method to construct prolongation and relaxation matrices, which preserve the
regular structure of the outer ring. The structure allows the use of line relaxation as a
smoother.

The large element aspect ratios near r = 1.9 and r = 2.1 can be problematic for multigrid
algorithms. In particular, standard pointwise smoothers such as the Jacobi algorithm can
be highly ineffective at smoothing errors in the direction of large mesh spacing. Figure 5.1
illustrates the error after applying 10 sweeps of Jacobi relaxation with a damping parameter
of 0.5 to solve the problem Au = 0 with a random initial guess. Notice that while the errors
are smooth in the radial direction they are highly oscillatory in the angular direction. This

Fig. 5.1: Example of the Jacobi algorithm struggling to smooth large aspect ratio elements
after 10 iterations. The figure on the left shows a radial cross-section, while the figure on
the right shows an angular cross-section. The largest aspect ratio is 100.

smoothing deficiency can be overcome by employing line relaxation in the direction of the
stretching, but this requires the use of a structured mesh so that line relaxation can be
employed on the coarser grids within the hierarchy.

Smoothed aggregation is used to generate rows of the prolongation matrices associated
with the center disk. During the multigrid cycle, Jacobi is always used as a relaxation
method for unknowns associated with the inner disk.

Since different smoothers are being used on different regions, an additional communi-
cation step is needed to ensure solution agreement on the shared interface. Following any
smoothing, like Jacobi or line smoothing, the solution at the shared points in the region that
was not smoothed are overwritten with the solution from the region that was smoothed. This
is demonstrated in Algorithm 5.1, where the subscript ’o’ denotes a vector subset associated
with the unknowns in the outer ring and the subscript ’i’ denotes a vector subset associated
with the unknowns in the disk center. uΓi is the solution on the shared interface for the
disk center, uΓo is the solution on the shared interface for the the outer ring. Dangular is
the preconditioner for line smoothing in the angular direction, Dradial is the preconditioner
for line smoothing in the radial direction, and D is given by the diagonal of A. For all three
cases, Dangular, Dradial, and D are constructed from the fully assembled A, yet only use
the rows and columns that are relevant to the corresponding region. ω is used as a damping
factor.

Table 5.1 illustrates preconditioned conjugate gradient iteration counts using multigrid
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Algorithm 5.1 Line smoothing with additional communication
angular line smoother in outer ring uo = uo + ωD−1

angular(b−Au)o
overwrite shared values uΓi = uΓo

Jacobi smoother in disk center ui = ui + ωD−1(b−Au)i
overwrite shared values uΓo = uΓi

radial line smoother in outer ring uo = uo + ωD−1
radial(b−Au)o

overwrite shared values uΓi = uΓo

Jacobi smoother in disk center ui = ui + ωD−1(b−Au)i
overwrite shared values uΓo = uΓi

Nodes Number Max Aspect Total pcg iterations
Per Spoke Spokes Ratio Unknowns Jacobi Line Smooth AMG

10 24 4.8 285 20 11 21
28 72 4.8 2417 27 13 31
82 216 4.7 21501 30 18 49
244 684 4.7 192773 32 27 62
28 24 14.2 717 47 12 45
82 72 14.2 6305 81 14 94
244 216 14.2 56493 90 18 100
10 24 132.7 285 29 12 31
28 72 124.4 2417 72 14 89
82 216 121.6 21501 100 19 100
244 684 120.6 192773 100 26 100
28 24 372.4 717 64 13 60
82 72 364.7 6305 100 14 99
244 216 361.9 56493 100 18 100

Table 5.1: Iteration counts for various methods (capped at 100). Jacobi is a two region
method: black box multigrid on outside disk and SA on inside disk with a Jacobi smoother
everywhere. Line Smooth is a two region method using black box multigrid and a line
smoother on the outside disk and SA with Jacobi smoother on the inside disk. AMG is
a one region method using SA with Jacobi smoother everywhere. (residual tolerance 1e-9,
zero initial guess)

as a preconditioner for different mesh scenarios. Columns marked by “Jacobi” and “Line
Smooth” are associated with hierarchies where the grid transfers are obtained in a region-
oriented fashion using AMG for the unstructured center disk region and black-box multigrid
for the structured outer ring region. The “Jacobi” column multigrid V cycle employs four
sweeps of Jacobi pre-smoothing (with ω = 0.5) and four sweeps of Jacobi post-smoothing.
The “Line Smooth” column applies the relaxation given in by the Algorithm 5.1 code frag-
ment. The “AMG” column obtains grid transfers by applying AMG to the fully assembled
matrix (i.e. the standard ’one region’ method) and using four pre-smoothing and four
post-smoothing Jacobi sweeps for relaxation.

For smaller aspect ratios, one can see that all of the methods are fairly competitive with
each other. Overall, there is a modest improvement in using the black-box multigrid transfers
in the structured region with Jacobi relaxation throughout the domain when compared with
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using AMG grid transfers and Jacobi relaxation. There are additional iteration savings using
the line relaxation smoothing.

For large aspect ratios, these iteration savings are much more pronounced. In fact, for
some of the larger aspect ratios, the standard AMG approach with point relaxation does
not even converge within 100 iterations while the line smoothing region-oriented version
converges fairly robustly over a range of aspect ratios and mesh sizes. The key point to
notice is that line relaxation is only possible because the structured mesh within the outer
ring is maintained on all levels of the hierarchy.

6. Conclusions. A hybrid structured-unstructured multigrid algorithm has been pre-
sented for applications in which only a few unstructured regions are needed to accurately
represent the underlying physical problem. Within the structured region a black-box multi-
grid algorithm is applied to generate grid transfer operators. Within the unstructured region
an AMG method is applied. The main challenge in devising a hybrid approach is to assure
that the prolongation operator is consistent at the interfaces between structured and un-
structured regions. This primarily requires adapting the AMG’s aggregation algorithm so
that its aggregates at the interface are consistent with the coarse points and grid transfer
sparsity pattern of the structured multigrid algorithm.

An example has been presented highlighting the potential convergence benefits of a
hybrid structured-unstructured multigrid approach. In this example, the structured region
included an anisotropic mesh that is used to capture features within a ring of interest.
Line relaxation can be used within the structured region of the hybrid scheme to address
smoothing limitations of point relaxation on anisotropic meshes. Line relaxation is not
possible when a standard AMG method is applied to the entire mesh, as structure is not
preserved throughout the hierarchy. Numerical results illustrate that the convergence rate
of the hybrid method combined with line relaxation is relatively insensitive to the mesh
element aspect ratio while convergence rates deteriorate for schemes that do not employ
line relaxation.
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A HYBRIDIZED DISCONTINUOUS GALERKIN METHOD FOR
RESISTIVE INCOMPRESSIBLE MAGNETOHYDRODYNAMICS

STEPHEN J. SHANNON∗, JOHN N. SHADID† , TAN BUI-THANH‡ , AND JEONGHUN J. LEE§

Abstract. An important base-level representation for continuum approximation of the dynamics of
charged fluids in the presence of electromagnetic fields is the resistive magnetohydrodynamics (MHD) model.
MHD models describe important physical phenomena in the physical world (e.g., solar flares, and planetary
magnetic field generation) as well as in science and technological applications (e.g., magnetically confined
fusion energy [e.g. ITER]). This multiphysics PDE system is strongly coupled, highly nonlinear, and char-
acterized by multiple interacting physical phenomena spanning a very large range of length- and time-scales.
For effective discrete approximation of these systems, high-order spatial discretizations and some form of
implicit temporal integration can be attractive methods. In this study the development and analysis of a new
hybridizable (also known as hybridized) discontinuous Galerkin (HDG) method for the solution of resistive
incompressible MHD systems is presented. This development considers the construction of an HDG solver
for a linearized system, which is used as a sub-step in a fixed-point nonlinear solver. Optimal convergence
in the velocity and magnetic field variables for steady and unsteady benchmark problems is demonstrated.

1. Introduction. The discontinuous Galerkin (DG) method, originally developed by
Reed and Hill [21] for the neutron transport equation, roughly speaking, combines advan-
tages of classical finite volume and finite element methods. In particular, it has the ability
to treat solutions with large gradients including shocks, provides the flexibility to deal with
complex geometries, and is highly parallelizable due to its compact stencil. However, for
steady-state problems or time-dependent ones that require implicit time-integrators, DG
methods typically have many more coupled unknowns compared to the other existing nu-
merical methods, and hence are more expensive in general.

In order to mitigate the computational expense associated with DG methods, Cockburn,
coauthors, and others have introduced hybridizable (also known as hybridized) discontinuous
Galerkin (HDG) methods for various types of PDEs including Poisson-type equation [5, 16],
Stokes equation [14], and Euler, Navier-Stokes, and wave equations [17, 19, 18]. The upwind
HDG framework proposed in [3] provides a unified and a systematic construction of HDG
methods for a large class of PDEs. In HDG discretizations, the coupled unknowns are
single-valued traces introduced on the mesh skeleton, i.e., the faces, and the resulting matrix
is substantially smaller and sparser compared to standard DG approaches. Once the trace
unknowns are solved for, the usual DG unknowns can be recovered in an element-by-element
fashion, completely independent of each other.

In the context of MHD simulations, the most common computational solution strategies
for many years have been the use of explicit [2, 24] and partially implicit time integration
methods such as implicit-explicit [25, 20, 10], semi-implicit [8, 4], and operator-splitting [22]
techniques (see [9] for a recent review). With the exception of fully-explicit strategies, that
due to numerical stability constraints must resolve the fastest component time-scales, all
these time integration methods include an aspect of implicit integration. The implicitness
of these approaches is used to enhance efficiency by removing stringent explicit time-scale
constraints in the problem, either from diffusion or from fast-wave phenomena.

In addition to the challenges associated with robustly and efficiently dealing with the
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very large range of time scales inherent in the resistive MHD system, there are a number
of spatial discretization issues that add considerable complexity to the numerical approxi-
mation of these systems. These include dealing with the dual saddle-point structure of the
velocity-pressure (u, p) interactions in the Navier-Stokes operators, and the satisfaction/en-
forcement of the solenoidal involution/constraint on the magnetic induction (∇ · b = 0) in
conjunction with the evolution of the induction equation for b.

The current study presents an HDG formulation that deals with the double saddle-point
structure of the linearized incompressible resistive MHD system and analyzes well-posedness.
Numerical studies then demonstrate these results for nonlinear steady and unsteady prob-
lems using the linear solver as a sub-step in a fixed-point nonlinear solver. It is intended
that in future work the linear HDG scheme will be employed as the fast-time-scale operator
in a linear HDG-nonlinear DG implicit-explicit (IMEX) scheme.

The remainder of this paper is organized as follows. In section 2 we review the basic
concepts of HDG. In section 3 we introduce an HDG scheme for a linearization of the
resistive incompressible MHD equations, discuss ways to enforce the zero mean pressure
condition, and provide well-posedness results and analysis for the scheme. In section 4 we
present a nonlinear fixed point iteration that we use to solve the full nonlinear resistive
incompressible MHD system using the linear scheme as substep. In section 5 we review
(implicit) time integration methods suitable for evolving HDG schemes. In section 6 we
present numerical results before concluding.

2. A Brief Introduction to HDG. In this section, we outline the basic concepts of
HDG in the context of a general class of PDEs. Consider the abstract symmetric hyperbolic
system of PDEs,

∇ · F (U) + CU :=
d∑
k=1

∂kFk (U) + CU = f in Ω, (2.1)

where Fk (U) = AkU, with each Ak symmetric, and Ω ⊂ Rd.
Toward solving Eq. 2.1 numerically, we partition the computational domain Ω ⊂ Rd,

with boundary ∂Ω, into disjoint elements K (simplices or quadrilaterals/hexahedra), and
define T as the collection of elements K. We define ∂T := {∂K : K ∈ T } as the collection
of element boundaries. For any K, e = ∂K ∩ ∂Ω is a (d− 1 dimensional) boundary face if
e has a nonzero d− 1 Lebesgue measure. For any distinct K− and K+, e = ∂K− ∩ ∂K+ is
an interior face if e has a nonzero d− 1 Lebesgue measure. The mesh skeleton, E , is defined
as the collection of all faces, boundary and interior.

We define (·, ·)K as the L2 inner product over element K, and (·, ·)T :=
∑
K(·, ·)K .

Similarly, we define 〈·, ·〉∂K as the L2 inner product over the boundary of element K, and
〈·, ·〉∂T :=

∑
K 〈·, ·〉∂K .

Formally, multiplying Eq. 2.1 by an elementwise continuous test function, integrating
over Ω, and integrating by parts, we have

− (F(U),∇v)K + (CU,v)K + 〈F(U) · n,v〉∂K = (f ,v)K ∀K ∈ T . (2.2)

Replacing the boundary term by a single-valued flux that depends on the solution U on
each side of the interface, F∗ = F∗(U−,U+), we have DG scheme:

− (F(U),∇v)K + (CU,v)K +
〈
F∗(U−,U+),v

〉
∂K

= (f ,v)K ∀K ∈ T . (2.3)

The implicit DG scheme, Eq. 2.3, leads to a system where all the unknowns are globally
coupled.
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Instead, to construct an HDG scheme, introduce the trace unknown Û and replace the
flux on the boundary in Eq. 2.2 by a one sided HDG flux F̂ = F̂(U−, Û),

− (F(U),∇v)K + (CU,v)K +
〈
F̂
(
U, Û

)
· n,v

〉
∂K

= (f ,v)K ∀K ∈ T , (2.4)

and, to close the system, enforce that the normal flux is (weakly) continuous across element
interfaces, 〈

F̂
(
U, Û

)
· n, µ

〉
∂T \∂Ω

= 0 (2.5)

for facewise continuous test functions, µ.
The HDG scheme comprises the local solver, Eq. 2.4, the transmission or conservation

conditions, Eq. 2.5, and boundary conditions. We refer the reader to [3] for more details,
including a framework for constructing HDG fluxes leading to well-posed upwind HDG
schemes for PDEs of the form Eq. 2.1 with linear fluxes F, and an extension to nonlinear
fluxes.

For linear systems, the HDG scheme, Eqs. 2.4 and 2.5, gives rise to the following matrix
equations, where U represents the vector degrees of freedom of U, and Û represents the
vector degrees of freedom of Û,[

A C
B E

]∗{ U
Û

}
=
{

Fl
Fc

}
. (2.6)

Here, the subscripts l and c stand for local and conservation, respectively.
The power of HDG comes from the following.
• The HDG flux is one-sided, i.e., for a given element, the flux depends only on the

solution in that element and the neighboring skeleton faces. Together with the fact
that the discontinuous basis functions are local to one element, A is block diagonal.

• If the local solver
(
Û, f

)
7→ U given by Eq. 2.4 is well-posed, then A is invertible.

Therefore, we can easily eliminate U from Eq. 2.6 by a static condensation procedure, and
write

U = A−1
[
Fl − CÛ

]
. (2.7)

The global system, Eq. 2.6, then reduces to(
E− B [A]−1 C

)
︸ ︷︷ ︸

K

Û = Fg − B [A]−1 Fl︸ ︷︷ ︸
F

. (2.8)

In practice, K and F are formed by a local assembly procedure, Û is solved for from the
reduced global system, Eq. 2.8, and then U is recovered in an element by element fashion
from Eq. 2.7.

3. An HDG Scheme for Resistive, Incompressible MHD. We consider the re-
sistive, incompressible MHD equations written in non-dimensionalized form.

∂u

∂t
+ u · ∇u+∇p− 1

Re
∆u− κ(∇× b)× b = 0 (momentum) (3.1a)

∇ · u = 0 (mass) (3.1b)

κ
∂b

∂t
+∇r − κ∇× (u× b) +

κ

Rm
∇× (∇× b) = 0 (induction) (3.1c)

∇ · b = 0 (no monopole) (3.1d)
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Here u is velocity of the fluid, b is magnetic induction, Re := ρu0l0
µ is the Reynolds number,

Rm := µ0u0l0
η is magnetic Reynolds number, and interaction parameter κ := Ha2

ReRm , where
Ha := b0l0√

µη is the Hartmann number. See [13] for more details on dimensionless parameters
related to MHD. l0, u0, and b0 are some characteristic length, velocity, and magnetic field,
respectively. r is a scalar potential introduced to enforce the solenoidal constraint (∇·b = 0).

(Note: to recover the full dimensional form of the equations, we make the substitutions
Re→ ρ

µ , Rm→ µ0
η , κ→ 1

ρµ0
, and p→ p

ρ ).
In this paper, we consider the Dirichlet boundary conditions u = uD, b

t := −n× (n×
b) = hD, and r = 0 on ∂Ω, where we have defined the tangent component of a vector a as
at := −n × (n × a). For uniqueness of the pressure, we require the zero average pressure
constraint

(p, 1)Ω = 0. (3.2)

Additionally, we require the compatibility condition

〈uD, 1〉∂Ω = 0. (3.3)

3.1. An HDG Scheme. We introduce the following discontinuous piecewise polyno-
mial approximation spaces.

Gh :=
{
G ∈

[
L2(T )

]d×d
: G|K ∈

[
P k(K)

]d×d ∀K ∈ T } ,
V h :=

{
v ∈

[
L2(T )

]d
: v|K ∈

[
P k(K)

]d ∀K ∈ T } ,
Qh :=

{
q ∈ L2(T ) : q|K ∈ P k(K) ∀K ∈ T

}
,

Hh :=
{
H ∈

[
L2(T )

]d̃
: H|K ∈

[
P k(K)

]d ∀K ∈ T } ,
Ch :=

{
c ∈

[
L2(T )

]d
: c|K ∈

[
P k(K)

]d ∀K ∈ T } ,
Sh :=

{
s ∈ L2(T ) : s|K ∈ P k(K) ∀K ∈ T

}
,

Mh :=
{
µ ∈

[
L2(E)

]d
: µ|K ∈

[
P k(e)

]d ∀e ∈ E} ,
Λt
h :=

{
λ ∈

[
L2(E)

]d
: λ|K ∈

[
P k(e)

]d
, λ · ne = 0 ∀e ∈ E

}
,

Γh :=
{
γ ∈

[
L2(E)

]d
: γ|K ∈

[
P k(e)

]d ∀e ∈ E} ,
where d̃ = 3 if d = 3, and d̃ = 1 if d = 2, and ne is a unit vector normal to face e.

Inspired by the procedure outlined in [3], we linearize Eq. 3.1 about some velocity w
and some magnetic field d, and introduce auxiliary variables to write the system as a first
order hyperbolic system:

ReL−∇u = 0, (3.4a)
∂u

∂t
−∇ ·L+∇p+ (w · ∇)u− κ(∇× b)× d = g, (3.4b)

∇ · u = 0, (3.4c)
Rm
κ
J −∇× b = 0, (3.4d)

κ
∂b

∂t
+∇× J +∇r − κ∇× (u× d) = f , (3.4e)

∇ · b = 0. (3.4f)
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Next, we multiply Eqs. 3.4 by test functions (G,v, q,H, c, s) integrate by parts all
terms with a spatial derivative, and replace the resulting boundary terms by the normal
component of the HDG flux, upwind in nature,

Re (L,G)K + (u,∇ ·G)K +
〈(
F̂ · n

)
1
,G
〉
∂K

= 0, (3.5a)(
∂u

∂t
,v

)
K

+ (L,∇v)K − (p,∇ · v)K − (u⊗w,∇v)K

+κ (b,∇× (v × d))K +
〈(
F̂ · n

)
2
,v
〉
∂K

= (g,v)K , (3.5b)

− (u,∇q)K +
〈(
F̂ · n

)
3
, q
〉
∂K

= 0, (3.5c)

Rm
κ

(J ,H)K − (b,∇×H)K +
〈(
F̂ · n

)
4
,H
〉
∂K

= 0, (3.5d)

κ

(
∂b

∂t
, c

)
K

+ (J ,∇× c)K − (r,∇ · c)K

−κ (u,d× (∇× c))K +
〈(
F̂ · n

)
5
, c
〉
∂K

= (f , c)K , (3.5e)

− (b,∇s)K +
〈(
F̂ · n

)
6
, s
〉
∂K

= 0. (3.5f)

The normal HDG flux is given by

F̂ · n :=



−û⊗ n
−Ln+ (w · n)u+ pn+ 1

2κd×
(
n×

(
bt + b̂

t
))

+ α1 (u− û)
û · n
−n× b̂

t

n× J + r̂n− 1
2κn× ((u+ û)× d) + α2

(
bt − b̂

t
)

b · n+ α3 (r − r̂)


, (3.6)

where α1, α2, and α3 are constants specified later. To define the conservation conditions,
realize that the jump of the 1st, 3rd, and 4th components of the normal HDG flux is
automatically zero, because the trace unknowns û and b̂

t
are single valued on the skeleton,

and the normal vector across the interface is equal and opposite. Therefore, the conservation
conditions reduce to 〈(

F̂ · n
)

2
,µ
〉
∂T \∂Ω

= 0, (3.7a)〈(
F̂ · n

)
5
,λt
〉
∂T \∂Ω

= 0, (3.7b)〈(
F̂ · n

)
6
, γ
〉
∂T \∂Ω

= 0. (3.7c)

The Dirichlet boundary conditions are enforced through the trace unknowns by L2 projec-
tion,

〈û,µ〉∂Ω = 〈û,µ〉∂Ω , (3.8a)〈
b̂
t
,λt
〉
∂Ω

=
〈
hD,λ

t
〉
∂Ω
, (3.8b)

〈r̂, γ〉∂Ω = 0. (3.8c)
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As will be discussed below, with some additional conditions to enforce the zero average
pressure condition, Eq. 3.2, the following HDG scheme is well-posed: find (L,u, p,J , b, r,
û, b̂

t
, r̂) in Gh×V h×Qh×Hh×Ch×Sh×Mh×Λt

h×Γh such that Eqs. 3.5, 3.7, and 3.8
hold true for all (G,v, q,H, c, s,µ,λt, γ) in Gh×V h×Qh×Hh×Ch×Sh×Mh×Λt

h×Γh.
Note that despite the fact that (in 3D) with the introduction of the auxiliary variables

L and J we have 20 scalar volume unknowns, we have only 6 scalar global trace variables
(velocity, tangent magnetic field, and scalar Lagrange multiplier), which is less than the 8
primal scalar variables from the original PDE.

3.2. Well-posedness. Linear HDG schemes that are constructed through the frame-
work in [3], as well as other HDG schemes, are well suited for a simple energy analysis
to prove existence and uniqueness of a numerical solution. Since we have a linear, finite
dimensional, square system, existence is equivalent to uniqueness. For the HDG scheme,
we prove existence/uniqueness by setting the forcing terms to zero, and showing that we
recover the trivial solution, proving that the linear operator is invertible. An example of
application of this energy analysis for an HDG scheme for Stokes flow is given in [14].

3.2.1. Enforcing zero average pressure. Before proving well-posedness, we briefly
discuss ways to enforce the zero average pressure condition, Eq. 3.2 on the numerical scheme
(which will be necessary for well-posedness). Nguyen, Peraire, and Cockburn discuss two
methods of doing this; one direct way and one iterative way [14, 17]. Ultimately more
efficient (for problems with a fine mesh) is the iterative method, an Augmented Lagrangian
approach.

The Augmented Lagrangian approach involves adding an artificial time derivative term(
∂p
∂τ , q

)
K

to Eq. 3.5c. Discretizing the time derivative with implicit Euler and giving an
initial condition of p0 = 0, it turns out that solution converges to the solution of the original
scheme (without the artificial time derivative) with the pressure satisfying the zero average
condition.

For this study, we consider a direct approach. We introduce a new global scalar variable,
ρK that is constant over each element, and represents the integral of the pressure over each
element. Next, we modify the local equation, Eq. 3.5c, to read

− (u,∇q)K + 〈û · n, q〉∂K + (p, 1)K = ρK (3.9)

and introduce the global equation

〈û · n, 1〉∂K +
∑
K

ρK = 0. (3.10)

Note that our system is still square (we have added as many equations as unknowns to the
HDG system).

Also note that Eqs. 3.9 and 3.10 imply that Eq. 3.5c holds, that (p, 1)K = ρK for
each element, and that

∑
K

ρK = 0, satisfying the zero average pressure condition. Indeed,

summing Eq. 3.10 over all elements, and using the compatibility condition, Eq. 3.3, we
recover

∑
K

ρK = 0 and 〈û · n, 1〉∂K = 0 for each K. Then in Eq. 3.9, setting q = 1 on K,

we recover (p, 1)K = ρK , and subsequently recover Eq. 3.5c.
Finally, our local HDG system consists of Eqs. 3.5a, 3.5b, 3.9, 3.5d, 3.5e, and 3.5f.

The conservation conditions, Eq. 3.7, the boundary conditions, Eq. 3.8, and the additional
equations, Eq. 3.10, complete the scheme.

Note that even though p and r are analogous in the original PDE, Eq. 3.1, the same
care does not need to be taken to ensure uniqueness of r as does for p. In short, this is due
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to the boundary conditions studied in this paper. Here, the boundary condition on r leads
to the inclusion of r̂ (through which the boundary condition is enforced) in the flux, Eq.
3.6. This turns out to be sufficient for the uniqueness of the numerical solution for r.

3.2.2. Well-posedness of the local solver. Recall that an important aspect of an
HDG scheme is that the local solver is well-posed, which is equivalent to saying that we are
able to perform static condensation to have a reduced global system in terms of the trace
variables only.

We first consider the steady-state problem.
Theorem 3.1. Assume that α1 >

w·n
2 , α2 > 0, α3 > 0, and that ∇ ·w = 0. Then the

steady-state local solver
(
g,f , û, b̂

t
, r̂, ρ

)
7→ (L,u, p,J , b, r) defined by Eqs. 3.5a, 3.5b, 3.9,

3.5d, 3.5e, and 3.5f, with ∂
∂t = 0, is well-posed.

Proof. Setting
(
g,f , û, b̂

t
, r̂, ρ

)
= 0, setting (G,v, q,H, c, s) = (L,u, p,J , b, r), sum-

ming the local equations, and performing some integrations by parts, we arrive at an energy
identity,

Re (L,L)K +
〈(
α1 +

w · n
2

)
u,u

〉
∂K

+
Rm
κ

(J ,J)K +
〈
α2b

t, bt
〉
∂K

+ 〈α3r, r〉∂K = 0. (3.11)

From Eq. 3.11, we conclude that L = 0 and J = 0 on K, and that u = 0, bt = 0, and
r = 0 on ∂K. Eq. 3.5a reduces to (∇u,G)K = 0 ∀G which implies u is constant in K, and
therefore with the energy identity that u = 0 in K.

Eq. 3.5d and Eq. 3.5f reduce to (∇× b,H)K = 0 ∀H and (∇ · b, s)K = 0 ∀s, respec-
tively. Therefore ∇ × b = 0 and ∇ · b = 0. Lemma 3.4 in [7] tells us that for a function
in H(curl)0 ∩H(div), that ‖b‖L2 ≤ C (‖∇ × b‖L2 + ‖∇ · b‖L2). Since bt = 0 on ∂K, this
lemma applies, and therefore b = 0 in K.

Eq. 3.5e reduces to (∇r, c)K = 0 ∀c which implies r is constant in K, and therefore with
the energy identity that r = 0 in K. Eq. 3.5b reduces to (∇p,v)K = 0 ∀v which implies p
is constant in K. Finally, Eq. 3.9 reduces to (p, 1)K = 0, which gives p = 0 in K.

Note that the proof above is valid for the equal order polynomial spaces that we have
defined in Section 3.1. More generally, the proof above holds for discrete spaces that satisfy
∇V h(K) ⊂ Gh(K), ∇ × Ch(K) ⊂ Jh(K), ∇ · Ch(K) ⊂ Sh(K), ∇Sh(K) ⊂ Ch(K), and
∇Qh(K) ⊂ V h(K).

Semidiscrete stability for the unsteady problem can be proven in a similar manner, now
with initial conditions b0 and u0 included in the forcing terms.

3.2.3. Well-posedness of the global solver. We state, without proof, the result for
the well-posedness of the steady-state global solver. The proof will appear in [12]. Similar
proofs can be found in [3, 14, 16].

Theorem 3.2. Assume that α1 >
w·n

2 , α2 > 0, α3 > 0, and that ∇·w = 0. Also assume
that w ∈ H(div,Ω), that d ∈ H(div,Ω) ∩H(curl,Ω), and that Ω is simply connected with
one component to the boundary [7]. Then the steady-state global solver (g,f ,uD,hD) 7→(
û, b̂

t
, r̂, ρ,L,u, p,J , b, r

)
defined by the HDG scheme, Eqs. 3.7, 3.8, 3.10, 3.5a, 3.5b, 3.9,

3.5d, 3.5e, and 3.5f, with ∂
∂t = 0, is well-posed.

Again, semidiscrete stability for the unsteady problem can be proven in a similar man-
ner, now with initial conditions b0 and u0 included in the forcing terms.
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4. A Nonlinear Solver. In this work, we employ the linear HDG scheme, Eqs. 3.5a,
3.5b, 3.9, 3.5d, 3.5e, 3.5f, 3.7, 3.8, and 3.10, in a fixed point Picard iteration to find a
numerical solution to the nonlinear problem, Eq. 3.1. That is, at iteration count k + 1, we
set (w,d) to the solution (u, b) at iteration k and solve the linear system. We stop iterating
when we reach certain stopping criteria. See [23] for suitable stopping criteria.

For the time dependent problem, numerical experiments have shown that the Picard
iteration is robust with respect to the time step size for various Runge-Kutta time stepping
schemes. For steady-state problems, we use a pseudotime step approach, reintroducing the
time derivatives and taking large steps with implicit Euler to reach steady state.

5. Time Integration. For unsteady HDG, since u and b have time derivatives and the
remaining variables do not, the discretization gives rise to a differential algebraic system of
index 1 [15]. For these systems, implicit time stepping schemes such as BDF and diagonally
implicit Runge-Kutta (DIRK) are suitable.

In this work, we consider DIRK schemes. Briefly, an s-stage DIRK scheme involves s
implicit solves for the intermediate-stage values, followed by an explicit update to compute
the solution at tn+1. At each stage, we apply the Picard linearization, which results in linear
systems that still take the form of Eq. 2.6, where we solve for all variables in the usual way.
Then, in the explicit update step of the DIRK scheme, we compute (un+1, bn+1) from the
intermediate-stage values of u and b. Finally, because of the nature of unsteady HDG
scheme, in order to calculate

(
Ln+1, pn+1,Jn+1, rn+1, ûn+1, b̂

t,n+1
, r̂n+1, ρn+1

)
we must

perform an additional implicit solve. Note that we can advance in time without performing
this additional solve, so we only need to perform this additional implicit solve at time steps
of interest. See [15] for details.

The class of stiffly-accurate DIRK methods has the desirable property (among other de-
sirable properties) that the final intermediate stage coincides the next time step. Therefore,
when using stiffly-accurate DIRK methods, the additional implicit step described above is
never necessary. In the numerical simulations below, we employ 2 stage, 2nd-order and
3 stage, 3rd-order stiffly-accurate DIRK methods from [1], and 5 stage, 4th-order stiffly-
accurate DIRK method given in Table 22 of [11]. In the remainder of this paper, we refer
to these methods as DIRK(2,2), DIRK(3,3), and DIRK(5,4), respectively.

6. Numerical Results.

6.1. Hartmann Flow. As a steady-state verification problem, we consider Hartmann
flow, studied in [23]. Consider a conducting incompressible fluid (liquid metal, for example)
in a domain [−∞,∞]× [−l0, l0]× [−∞,∞] bounded by infinite parallel plates. The fluid is
subject to a uniform pressure gradient G := − ∂p

∂x in the x direction, and a uniform external
magnetic field b0 in the y direction. If we consider no-slip boundary conditions, the resulting
flow pattern is known as Hartmann flow and is described by an analytical solution that is
1D in nature. If the infinite parallel plates are perfectly insulating, the analytical solution is

given by u =
(

Gl20
µHa tanh(Ha)

(
1−

cosh( yl0
Ha)

cosh(Ha)

)
, 0, 0

)
, and b =

(
Gl0µ0
b0

(
sinh( yl0

Ha)

sinh(Ha) −
y
l0

)
, b0, 0

)
.

For this study, we consider a 2D domain [0, 10]× [−l0, l0]. We choose l0 = ρ = µ = µ0 =
η = 1, G = 50, and vary b0 to produce velocity and magnetic field profiles with steeper and
steeper gradients. Periodic boundary conditions are applied in the x direction. Zero initial
conditions were given for the pseudo time stepping.

Figure 6.1 shows the x velocity and x magnetic field profiles for various values of b0.
In each case, 4th-order basis functions are used, with a mesh of 1× 8 elements strategically
clustered toward the edge of the domain in order to capture the sharp features. Without this
clustering, oscillations can appear on the element interior. In future work, we will consider
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stabilization/shock capturing [6].

Fig. 6.1: Hartmann flow problem: varying the external magnetic field b0 and keeping all
other parameters constant. On the left is the x velocity profile (scaled). On the right is
the x magnetic field (scaled). Polynomial order p = 4, mesh is 1× 8 elements, strategically
clustered toward y = ±1.

Figure 6.2 demonstrates the optimal spatial convergence of the velocity and magnetic
field. A mesh of 1×K uniformly spaced elements is used.

Fig. 6.2: Hartmann flow problem: spatial convergence of velocity and magnetic field, uni-
formly spaced mesh of 1×K elements.

6.2. Rayleigh Flow. As a time dependent verification problem, we consider a Rayleigh
flow problem with Alfvén wave propagation, studied in [23]. Consider a conducting incom-
pressible fluid in a semi-infinite domain [−∞,∞]× [0,∞]× [−∞,∞] bounded by an infinite
parallel insulating plate, subject to a uniform external magnetic field b0 in the y direction.
The fluid is initially at rest, and the plate is instantaneously set into motion at a velocity
U in the x direction. The resulting flow pattern is described by an analytical solution that
is 1D in nature, u =

(
U
4

[(
1 + e

−A0y
d

)
erfc

(
y−A0t

2
√
dt

)
+
(

1 + e
A0y
d

)
erfc

(
y+A0t

2
√
dt

)]
, 0, 0

)
, and

b =
(
−U
√
µρ

4

(
1− e

−A0y
d

) [
erfc

(
y−A0t

2
√
dt

)
+ e

A0y
d erfc

(
y+A0t

2
√
dt

)]
, b0, 0

)
.
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For this study, we consider a 2D domain [0, 5] × [0, l0], with periodic boundary condi-
tions in the x direction, a no-flow, insulating boundary condition at y = l0, and a no-slip,
insulating boundary condition at y = 0. We choose ρ = µ = µ0 = η = 1, and U = 1.

As a first test, we choose b0 = 10, and l0 = 5. Figure 6.3 shows the x velocity and
x magnetic field profiles for various times up to t = 0.1. Fourth-order basis functions are
used, with a mesh of 1× 32 elements strategically clustered. DIRK(5,4) time stepping was
used with a time step of ∆t = 5× 10−3.

Fig. 6.3: Rayleigh flow problem: On the left is the x velocity profile. On the right is the x
magnetic field profile. Calculated on a domain of [0, 5]×[0, 5], with a mesh of 1×32 4th-order
elements, strategically clustered. Time stepping is DIRK(5,4) with ∆t = 0.5× 10−3.

As a more demanding test of the robustness of the scheme, we apply an external mag-
netic field of b0 = 100, and set l0 = 50 to accommodate the faster speed of the propagating
wave while reasonably representing a semi-infinite domain. Figure 6.4 shows the x velocity
and x magnetic field profiles for various times up to t = 0.1. Fourth-order basis functions
are used, with a mesh of 1× 288 elements strategically clustered to capture the very steep
gradient around y = 0, and the propagating wave, which become less steep as it travels
away from y = 0. DIRK(5,4) time stepping was used with a time step of ∆t = 5× 10−4.

Figure 6.5 demonstrates the optimal temporal convergence of the velocity and mag-
netic field for stiffly-accurate, L-stable, diagonally-implicit Runge-Kutta methods of order
1 through 4. We set b0 = 10 and l0 = 5. A mesh of 1× 32 strategically clustered 7th-order
elements is used, and the system is evolved to t = 0.01.

Figure 6.6 demonstrates the optimal spatial convergence of the velocity and magnetic
field. Again b0 = 10 and l0 = 5. A mesh of 1 × K uniformly spaced elements is used.
DIRK(5,4) time stepping was used to step to a final time of 0.01, with a time step of
∆t = 5× 10−4.
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Fig. 6.4: Rayleigh flow problem: On the left is the x velocity profile. On the right is
the x magnetic field profile. Calculated on a domain of [0, 5] × [0, 50], with a mesh of
1 × 288 4th order elements elements, strategically clustered. Time stepping is DIRK(5,4)
with ∆t = 0.5× 10−4.

Fig. 6.5: Rayleigh flow problem: temporal convergence of velocity and magnetic field, 1×32
non-uniformly spaced elements, 7th-order basis, final time of 0.01.
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Fig. 6.6: Rayleigh flow problem: spatial convergence of velocity and magnetic field, 1 ×K
uniformly-spaced elements, DIRK(5,4), final time of 0.01.
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7. Conclusions. The multiphysics PDE system of resistive MHD is strongly coupled,
highly nonlinear, and characterized by multiple interacting physical phenomena spanning a
very large range of length- and time-scales. These characteristics make the scalable, robust,
accurate, and efficient computational solution of these systems, over relevant dynamical
length- and time-scales of interest, extremely challenging.

Toward development of such a scheme, we have constructed a new high-order implicit
HDG method for a linearized, resistive, incompressible MHD system. We have proven
stability of the scheme, and have applied the scheme to steady and unsteady benchmark
problems with smooth solutions. The linear scheme was employed in a fixed-point nonlin-
ear solver, and has demonstrated optimal convergence in the velocity and magnetic field
variables (p+ 1) for these benchmark problems.
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AN IMPORTANCE SAMPLING APPROACH TO RISK ESTIMATION

TIMUR A. TAKHTAGANOV∗, DREW P. KOURI† , AND DENIS RIDZAL‡

Abstract. We propose and study an approach for estimating finite coherent risk functions of computa-
tionally expensive quantities of interest. The proposed approach is based on the conjugate duality properties
of risk functions. We utilize the idea of risk identifiers to provide a strategy for a more efficient sampling of
the input parameter space than plain Monte Carlo sampling. We discuss and evaluate several methods for
reweighting obtained samples that are based on minimum distance estimation. This approach is different
from a standard approach in importance sampling literature that is based on likelihood ratios. The results
of applying our method to the simple test problems indicate general effectiveness of our method as compared
to the standard Monte Carlo method.

1. Introduction. This paper develops an efficient method for estimating risk functions
of uncertain outcomes. The motivation for this research comes from optimization problems
governed by PDEs with random inputs. Such problems generally require a large number of
deterministic PDE solves. Our goal is to reduce the cost of solving such problems by reducing
the number of samples required with a guided sampling of the random input parameters.

In this work we consider sampling-based discretization of problems with random inputs.
The advantages of using sampling-based methods, such as Monte Carlo sampling, are easy
implementation, by reusing existing deterministic solvers, and easy parallelization. How-
ever, the slow rate of convergence of the Monte Carlo method can render it intractable for
expensive problems, such as PDE-constrained optimization problems. The efficiency of the
Monte Carlo method can be improved by employing variance reduction methods, such as
importance sampling (IS) [7]. The main idea of IS is to generate weighted samples not from
the original distribution of random inputs but from an auxiliary probability distribution
referred to as the biasing distribution. Successful application of IS relies heavily on the
choice of biasing distribution that is used to generate samples. A general approach that
does not assume any knowledge of the form of biasing distribution is known in the literature
as nonparametric IS or NIS [25, 14]. This approach proceeds by constructing a biasing
distribution using kernel density estimation (KDE) [22]. When samples are generated from
the biasing distribution they are weighted by the ratio of the original density to the biasing
density evaluated at the sample (likelihood ratio). The appearance of the biasing density
in the denominator may cause extremely unbalanced weights leading to very inaccurate IS
estimates [15]. Several studies suggest that application of NIS becomes especially hard in
higher-dimensional cases (5-10 random inputs) [24, 14]. It is also important to note that
KDE methods suffer from increased bias with increasing dimension [22].

The approach to risk estimation proposed in this paper combines ideas from the IS
literature with the concepts of conjugate duality of convex risk functions from stochastic
programming literature [21]. Using biconjugate representations of convex risk functions,
our approach identifies the regions of the input parameter space that are “important” for a
given risk function. We use KDE or acceptance-rejection (AR) methods to generate samples
in the identified important regions. We further propose the use of goodness-of-fit tests from
statistical literature [5, 4, 12] to identify weights for the generated samples as an alternative
to using likelihood ratios.

The paper is organized as follows. In Section 2 we identify the risk functions of inter-
est and review their properties. In Section 3 we propose an algorithm for estimating risk
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functions with adaptive sampling. Sections 4 and 5 present the details of the proposed algo-
rithm. Section 6 provides test examples and numerical results. Section 7 draws conclusions
from the numerical results and outlines future work.

2. Risk functions. Let f : Z → H be a function from a Banach space of decision
variables Z to a vector space of random variables H, i.e., f(z) is a random variable with
realizations denoted by f(z, ξ) = f(z)(ξ). For example, f(z, ξ) might represent a quantity
of interest associated with a solution of a complex PDE model for a given z. Consider the
problem of minimizing a composite risk function of the quantity of interest f :

min
z∈Z
R[f(z, ξ)]. (2.1)

This problem provides the motivation for the current work. In this paper we only
address a question of efficient approximation of the objective function in the problem above,
R[f(z, ξ)]. Therefore, in the following we suppress the dependence on z and simply write
f(ξ) or X(ξ) depending on the context.

In a broad sense by a risk function we understand a function R that assigns a real value
R[X] to an uncertain outcome X ∈ H. To make this more precise we consider the Banach
space H = Lpρ(Ξ) of measurable functions X : Ξ ⊂ RM → R satisfying∫

Ξ

|X(ξ)|pρ(ξ)dξ < +∞,

where ρ : Ξ → [0,∞] is a probability density function. Particularly useful in applications
are the risk functions that satisfy the following four properties: for X,Y ∈ H

1. convexity: R[αX + (1− α)Y ] ≤ αR[X] + (1− α)R[Y ], α ∈ [0, 1];
2. monotonicity: R[Y ] ≥ R[X] if Y ≥ X almost surely;
3. translation equivariance: R[X + a] = R[X] + a for a ∈ R;
4. positive homogeneity: R[tX] = tR[X], for t ≥ 0, t ∈ R.

The functions R : H → R = R ∪ {+∞} satisfying these four properties are called coherent
measures of risk [2]. Furthermore, we assume that risk functions are proper, i.e.,

R[X] > −∞, ∀X, and dom(R) = {X ∈ H : R[X] < +∞} 6= ∅.

In this work we consider two proper coherent risk functions that fall into the category of
mean-risk models. In these models the objective is a combination of the mean of an uncertain
outcome and the risk associated with it. The two risk functions under consideration are:

1. Mean-CVaR:

R[X] = (1− c) E[X] + cCVaRβ [X], c ∈ [0, 1]

where [19]

CVaRβ [X] = inf
t∈R
{t+

1
1− β

E[(X − t)+]}

with (·)+ = max{·, 0}.
2. Mean-semideviation:

R[X] = E[X] + cE[(X − E[X])+], c ∈ [0, 1].
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Both considered models are characterized by quantifying the risk of one-sided deviations
of the quantity of interest: for the mean-semideviation model it is the risk of being above
the mean, and for the mean-CVaR model - the risk associated with an upper tail of the
distribution of the quantity of interest. These formulations are particularly well-suited for
the minimization problem (2.1). To make the problems more specific we consider the mean-
CVaR model with c = 1 (pure CVaR), c = 0.5 (mean-CVaR), and the mean-semideviation
model with c = 1 (mean-SD).

Before introducing our approach to estimation and minimization of the considered risk
functions we review the relevant properties of convex risk functions.

2.1. Conjugate duality of risk functions. The following review is based on [21, 23].
As in the previous section, let R : H → R be a risk function defined on an appropriate

space H of random outcomes. Specifically, for mean-CVaR and mean-semideviation the
domain is H = L1

ρ(Ξ). The topological dual H∗ for these two functions is L∞ρ (Ξ). From
now on we restrict discussion to these spaces.
For X ∈ L1

ρ(Ξ) and ϑ ∈ L∞ρ (Ξ) define a dual pairing as

〈ϑ,X〉 =
∫

Ξ

ϑ(ξ)X(ξ)ρ(ξ)dξ.

Then the conjugate function R∗ : L∞ρ (Ξ)→ R is defined as

R∗(ϑ) = sup
X∈L1

ρ(Ξ)

{〈ϑ,X〉 − R(X)}

and the biconjugate function as

R∗∗(X) = sup
ϑ∈L∞ρ (Ξ)

{〈ϑ,X〉 − R∗(ϑ)}.

By the Fenchel-Moreau theorem [18, Theorem 5] we have that if R : L1
ρ(Ξ) → R is

convex, proper, and lower semi-continuous (l.s.c.), then R∗∗ = R, i.e.,

R(X) = sup
ϑ∈L∞ρ (Ξ)

{〈ϑ,X〉 − R∗(ϑ)} = sup
ϑ∈dom(R∗)

{〈ϑ,X〉 − R∗(ϑ)}.

Furthermore, if R is monotonic, translation equivariant, and positively homogeneous,
then [23, p. 263]

R(X) = sup
ϑ∈A
〈ϑ,X〉, ∀X ∈ L1

ρ(Ξ), (2.2)

with A ≡ dom(R∗) given by (see [17, p. 114])

A = {ϑ ∈ P | 〈ϑ,X〉 ≤ R(X), ∀X ∈ H},

where P is a subset of the set of probability density functions

P =
{
ϑ ∈ L∞ρ (Ξ)

∣∣ ∫
Ξ

ϑ(ξ)ρ(ξ)dξ = 1, ϑ ≥ 0
}
.

The set A is called the risk envelope [13].
The maximizers ϑ ∈ A in (2.2) are called risk identifiers [13] and form a set

∂R(X) = arg max
ϑ∈A

〈ϑ,X〉. (2.3)
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2.2. Application to specific risk functions. We now review the implications of the
general theory in the previous section for the risk models that we consider.

Example 2.1 Consider the mean-CVaR risk function

R[X] = (1− c) E[X] + cCVaRβ [X], c ∈ [0, 1].

Its conjugate function is the indicator function of the set A = dom(R∗). We can represent
R in its dual form (2.2) with

A = {ϑ ∈ L∞ρ (Ξ) |ϑ(ξ) ∈ [ν, η] a.e. ξ ∈ Ξ, E[ϑ] = 1}

where ν = 1− c and η = 1 + cβ
1−β (see [21]).

In particular, for c = 1 (pure CVaR) we have R[X] represented as

R[X] = CVaRβ [X] = sup
ϑ∈A

E[ϑX]

with

A =
{
ϑ ∈ L∞ρ (Ξ) | ϑ(ξ) ∈

[
0,

1
1− β

]
a.e. ξ ∈ Ξ,E[ϑ] = 1

}
.

Since CVaRβ [X] is convex and continuous, it is subdifferentiable and its subdifferential
is given by

∂CVaRβ [X] =

ϑ
∣∣∣∣ E[ϑ] = 1,


ϑ(ξ) = 0 if X < VaRβ(X)
ϑ(ξ) = 1

1−β if X > VaRβ(X)
ϑ(ξ) ∈ [0, 1

1−β ] if X = VaRβ(X)

 ,

where VaRβ(X) = inf{t ∈ R : Pr[X ≤ t] ≥ β} is the β-quantile of X.
For the case c ∈ (0, 1)

∂R[X] =

ϑ
∣∣∣∣ E[ϑ] = 1,


ϑ(ξ) = ν if X < VaRβ(X)
ϑ(ξ) = η if X > VaRβ(X)
ϑ(ξ) ∈ [ν, η] if X = VaRβ(X)

 .

�

Example 2.2 Consider the mean-semideviation risk function

R[X] = E[X] + cE[(X − E[X])+].

The set A in this case is given by [21]

A = {ϑ ∈ L∞ρ (Ξ) | ϑ(ξ) = 1 + ζ(ξ)−
∫

Ξ

ζ(ξ)ρ(ξ)dξ, ‖ζ‖∞ ≤ c, ζ ≥ 0 a.e. in Ξ}.

The set A is a set of probability densities if c ∈ [0, 1].
Because R is convex, positively homogeneous, and continuous, for any X ∈ L1

ρ(Ξ) its
subdifferential is nonempty and given by

∂R(X) =
{

1 + ζ(ξ)−
∫

Ξ

ζ(ξ)ρ(ξ)dξ | ζ ∈ DX
}
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with

DX = arg max
ϑ∈L∞ρ (Ξ)

{∫
Ξ

(X(ξ)− E[X])ϑ(ξ)ρ(ξ)dξ
∣∣∣∣ ‖ϑ‖∞ ≤ c, ϑ ≥ 0 a.e. in Ξ

}
,

which has the following form [21]

DX =

ϑ ∈ cB∞ :


ϑ(ξ) = c, if X > E[X]
ϑ(ξ) = 0, if X < E[X]
ϑ(ξ) ∈ [0, c], if X = E[X]

 ,

where B∞ = {ϑ ∈ L∞ρ (Ξ) | ‖ϑ‖∞ ≤ 1}. In conclusion,

∂R(X) =

{
ϑ ∈ cB∞

∣∣∣∣
{
ϑ(ξ) = 1 + c(1− Pr(X > E[X])), if X > E[X]
ϑ(ξ) = 1− cPr(X > E[X]), if X < E[X]

}
.

For X = E[X] we have ϑ(ξ) ∈ [1 + c(1− Pr(X > E[X])), 1− cPr(X > E[X])].
�

3. Risk-informed sampling. The two risk functions considered - mean-CVaR and
mean-semideviation - are difficult to estimate efficiently. This is due to, on the one hand, the
non-smoothness of the positive part function (·)+ which makes efficient sampling methods
such as sparse grids intractable [3]. On the other hand there are sampling deficiencies
arising from the fact that only a fraction of samples contribute to the estimates of CVaR
and semideviation when using Monte Carlo sampling.

Our approach is based on the dual representation of risk measures presented in the
previous section. Specifically, we propose to use the risk identifiers forming the set (2.3) and
the biconjugate representation of the risk functions (2.2) to sample more efficiently. That is
we would like to sample from the distributions defined by risk identifiers in order to estimate
risk functions more accurately. The general framework is defined in the following algorithm
3.1. The inputs provided are the initial input distribution specified by the density function
ρ(ξ), the objective function (quantity of interest) X : Ξ → R, and the sizes of samples at
each step N0, N1, . . . , NS .

Remark. Algorithm 3.1 resembles the NIS algorithm, specifically its adaptive version
NAIS (see [25]). Here, however, we are not attempting to build the biasing distribution based
on the integrand (e.g., plus function in CVaR), but rather guide the sampling by utilizing
information about the risk function itself (biconjugate representation). Another important
difference is the way we address the problem of adjusting probabilities when combining the
samples from different densities. The standard approach in importance sampling literature
is to use the importance weights coming from the ratios of probability densities:

p(j) =
1
N
l(j), for j = 1, . . . , N, with l(j) =

ρ(ξ(j))
φ(ξ(j))

and N =
k∑
i=0

Ni. (3.1)

Here l(j)’s are the so-called likelihood ratios. In general, the sum of the likelihood ratios is not
N , thus, the weights p(j) might not sum up to 1. This might not matter for some problems,
for example, for estimating CVaR, since the estimate only relies on the probabilities in the
tail. In general, however, it is desirable to have the weights that sum up to 1. Several
approaches to normalize the weights based on likelihood ratios exist in the literature [8].
Here we include the results obtained using likelihood ratio probabilities (3.1) for comparison
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Algorithm 3.1 Risk-informed sampling (RIS) for estimating R[X(ξ)].

1: procedure RIS(ρ(·), X, {Nk}Sk=0)
2: Draw N0 samples from the original distribution ρ(·):

Ξ0 = {ξ(j), p(j)}N0
j=1.

Here p(j), j = 1, . . . , N0, are the weights assigned to samples (e.g., p(j) = 1
N0

).
3: Estimate R[X(ξ)] by R[X(Ξ0)] and ϑ(ξ) by ϑ(Ξ0).
4: for k ← 1, S do
5: Approximate density φ(ξ) ≈ ϑ(ξ)ρ(ξ) from Ξk−1.
6: Generate samples from φ(ξ): δΞk = {ξ(j)

, p(j)}Nkj=1.
7: Define

Ξk = Ξk−1 ∪ δΞk = {ξ(j), p(j)}
Pk
i=0Ni

j=1 .

8: Adjust probabilities p(j) so that Ξk is a random variable.
9: Estimate R[X(ξ)] by R[X(Ξk)] and ϑ(ξ) by ϑ(Ξk).

purposes, however, our main approach to adjusting probabilities of newly computed samples
is based on solving a distribution matching problem to be discussed in Section 5.

Several points need to be clarified in the algorithm above. Firstly, R[X(Ξk)] and ϑ(Ξk)
mean the estimates of a risk function and a risk identifier of a discrete variable Ξk. E.g., in
the case R[X] = CVaRβ [X] the estimates are obtained as follows: first, X(ξ(j)) are sorted
in descending order and samples are relabeled so that X(ξ(1)) > X(ξ(2)) > · · · > X(ξ(N))
with N =

∑k
i=0Ni, then the index kβ is found such that

kβ−1∑
j=1

p(j) ≤ 1− β <
kβ∑
j=1

p(j),

and CVaRβ [Ξk] is estimated as

CVaRβ [Ξk] =
1

1− β

1− β −
kβ−1∑
j=1

p(j)

VaRβ [X] +
kβ−1∑
j=1

p(j)X(ξ(j))

 ,

where VaRβ [X] = X(ξ(kβ)). The risk identifier values are assigned as follows:

ϑ(ξ(j)) =



1
1− β

for j = 1, . . . , kβ − 1,

0 for j = kβ + 1, . . . , N,

1
p(kβ)

(1− 1
1− β

kβ−1∑
j=1

p(j)) for j = kβ ,

(assuming that there is only one index i such that X(ξ(i)) = VaRβ [X], otherwise, the last
formula is adjusted accordingly), so that

∑N
j=1 ϑ(ξ(j))p(j) = 1.

Secondly, generation of the new samples on line 6 of algorithm 3.1 requires sampling from
the density ϑ(ξ)ρ(ξ). We consider two ways to generate such samples: the first way involves
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using kernel density estimation (KDE) to construct an approximation φ(ξ) ≈ ϑ(ξ)ρ(ξ) and
sampling from φ(ξ); the second way is to sample from the original density ρ(ξ) and to use the
acceptance-rejection method to keep samples distributed as ϑ(ξ)ρ(ξ). These two methods
are considered in more detail in the next section.

4. Sampling in important regions. In this section we address the question of gener-
ating new samples. We consider two ways to generate new samples based on the information
from the previous iteration. Suppose we have a set of points Ξk−1 and an estimate of the
risk identifier ϑ(ξ).

4.1. Kernel density estimation. Kernel density estimation (KDE) is a nonparamet-
ric density estimation method that is formulated by centering a smooth, symmetric kernel at
a given set of sample points [11, Section 4.5]. In short it can be summarized as follows: given
samples ξ(1), . . . , ξ(N) ∈ RM (from a discrete distribution), build kernel density estimate

φ(ξ) =
1
w

1
N det(B)

N∑
j=1

w(ξ(j))KM (B−1(ξ(j) − ξ)),

where B = diag(b1, . . . , bM ) is a diagonal matrix of window widths,
KM (·) is a kernel function (e.g., Gaussian kernel),
w(ξ) is a weighting function, and w =

∑N
j=1 w(ξ(j)).

Originally we chose the weighting function w(ξ) to be equal to ϑ(ξ) (the risk identifier).
However, better results were obtained with

w(ξ(j)) = ϑ(ξ(j)) l(j),

where l(j)’s are the likelihood ratios associated with the samples from the previous step
(with likelihood ratios corresponding to initial samples being identically 1).

Furthermore, we choose the kernel function to be Gaussian. The window width param-
eters b1, . . . , bM are chosen using the so-called “Rule-of-Thumb” method [11, Section 4.5.4].

4.2. Acceptance-rejection method. The acceptance-rejection algorithm for contin-
uous random variables is a basic method that can be used to generate samples from a
desired distribution φ(ξ) given another distribution ρ(ξ). A necessary assumption is that
φ(ξ)/ρ(ξ) ≤ C with C > 0. Since in our case φ(ξ) = ϑ(ξ)ρ(ξ) and ϑ(ξ) takes values in a
bounded interval [ϑLB , ϑUB ] this assumption is satisfied with C = ϑUB . The procedure to
generate N samples from φ(ξ) is then as follows: for j = 1, . . . , N

1. generate a candidate sample ξc from ρ(ξ);
2. generate a uniformly distributed variable U ;
3. if

U ≤ φ(ξc)
Cρ(ξc)

=
ϑ(ξc)
ϑUB

set ξ(j) = ξc (“accept”) and j = j + 1; otherwise go back to 1 (“reject”).
Of course, we cannot compute ϑ(ξ) at a given candidate sample ξc without computing

first the value of objective function at ξc. However, we can approximate ϑ(ξc) by extrapo-
lating the values of ϑ(ξ) at already computed samples. For example, we can take

ϑ(ξc) = ϑ(ξ(i)), where ξ(i) = arg min
ξ(j)

d(ξc, ξ(j))

and d(·, ·) is some distance metric (e.g., Euclidean distance). E.g., for the case R[X] =
CVaRβ [X] we will only be accepting samples that are “close” to the samples that lie in the
upper tail of the distribution of X(ξ).
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5. Adjusting probabilities. An important part of algorithm 3.1 is adjusting proba-
bilities p(j) when newly generated samples are added to the old set. We pursued the idea
of determining the probabilities of atoms in the combined set

{ξ(j)}
Pk−1
i=0 Ni

j=1 ∪ {ξ(j)}Nkj=1

by matching the empirical cumulative distribution function of the discrete random variable
Ξk to the known cumulative distribution function of the input random variable ξ. The
general problem is formulated as follows:

min
p
D(FN (x; p), Fξ(x)), (5.1)

where FN (x; p) is an empirical distribution function,

FN (x; p) =
N∑
j=1

p(j)
1[ξ(j) ≤ x], N =

k∑
i=0

Ni, (5.2)

that depends on the vector of probabilities p = [p(1), . . . , p(N)]. Here, Fξ(x) is a true c.d.f.
of input variable ξ

Fξ(x) = Pr(ξ ≤ x), (5.3)

and D(·, ·) is a distance function measuring the difference between two distributions.
The problem (5.1) is similar to the minimum distance estimation problem in statistical

literature [6]. Most studies of minimum distance estimation are based on goodness-of-fit
tests, with test statistics being used as distance measures. Some examples of goodness-
of-fit tests are Kolmogorov-Smirnov and Cramèr-von Mises tests [5]: given two univariate
distribution functions FN (·) and F (·)

1. Kolmogorov-Smirnov (KS) distance is defined as

DKS(FN , F ) = sup
x∈R
|FN (x)− F (x)| (5.4)

2. Cramèr-von Mises (CvM) distance is defined as

DCvM(FN , F ) =
∫
x∈R

(FN (x)− F (x))2
dF (x). (5.5)

Note that in the univariate case one could also consider minimizing distance between
the empirical distribution FN (·; p) and the true distribution Fξ(·) by simply ordering the
samples ξ(1), . . . , ξ(N) in the ascending order and and setting probabilities p(j) to be

p(1) = Fξ(ξ(1)), p(j) = Fξ(ξ(j))−
j−1∑
i=1

p(i), p(N) = 1−
N−1∑
i=1

p(i).

This would always provide a “lower” approximation to Fξ(x), that is, one would get FN (x; p) ≤
Fξ(x). By shifting probabilities above to the left, i.e., setting p(j) ← pj+1, one would get an
“upper” approximation to Fξ(x), i.e., FN (x; p) ≥ Fξ(x). In the multivariate case, Ξ ⊂ RM ,
we do not have an ordering of the set of samples; therefore, assigning probabilities as above
is not possible and instead we solve the minimization problem (5.1).

In the following we only consider distances based on Cramèr-von Mises test. Based
on our initial experiments Kolmogorov-Smirnov distance proved to be too conservative for
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our problem: focusing on the largest absolute difference between the empirical and the
true distribution functions does not allow to sufficiently reduce the small differences in the
regions that might be especially important. We have also considered the relaxation of the
KS distance - the so-called CVaR-distance defined in [16]

DU
α (FN , F ) = CVaRα[|FN (ζ)− F (ζ)|], (5.6)

however, it didn’t provide sufficient improvement over KS distance for problems with more
than one random variable.

5.1. Distance between distributions. The original Kolmogorov-Smirnov and Cramér-
von Mises tests (5.4)-(5.5) can be extended to a multivariate case M ≥ 2 using a so-called
Rosenblatt transformation [12, 20].

Theorem 5.1 (Rosenblatt transformation). Let ξ = (ξ1, . . . , ξM ) be a random vector
with joint density

ρ(ξ) = ρ1(ξ1)ρ2(ξ2|ξ1) . . . ρ(ξM |ξ1, . . . , ξM−1),

and define the transformation ζ = TR(ξ) by

ζ1 = Fξ1(ξ1), ζi = Fξi(ξi|ξ1, . . . , ξi−1), i = 2, . . . ,M.

Then ζ1, . . . , ζM are i.i.d. uniform 0-1.
In the theorem above Fξi(·) are marginal distribution functions. In general, the trans-

formation TR is not unique since there are M ! ways to number the coordinates. We
consider the case when components of the vector ξ = (ξ1, . . . , ξM ) are independent and
Fξ(x) =

∏M
i=1 Fξi(xi) (similarly ρ(ξ) =

∏M
i=1 ρi(ξi)), in which case Rosenblatt transforma-

tion is uniquely determined.
The multivariate KS and CvM tests rewritten using Rosenblatt transformation are

special cases of the so-called Lp-star discrepancy [9]:

D∗p =

(∫
[0,1]M

|UN (x; p)− λ(x)|pdx

)1/p

, (5.7)

where

UN (x; p) =
n∑
j=1

p(j)
1[ζ(j) ≤ x], ζ(j) = TR(ξ(j)),

and λ(x) = x1 . . . xM is the volume of hyper-rectangle [0,x]. In particular, CvM distance
is a squared L2-star discrepancy which we denote by D2:

D2 =
∫

[0,1]M
|UN (x; p)− λ(x)|2dx. (5.8)

This discrepancy measures the uniformity of the points in the M -dimensional cube.
There are several generalizations of star discrepancy which we also consider (taken from
[9, 10, 4]). These require some additional notation: let S = {1, . . . ,M} and for s ⊂ S let
xs denote a |s|-dimensional vector indexed by elements of s and x̃s = (x̃1, . . . , x̃M ) be an
M -dimensional vector with x̃k = xk if k ∈ s and x̃k = 1 otherwise.
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• Modified L2-star discrepancy (squared) is given by:

MD2 =
∑
∅⊆s⊆S

∫
[0,1]s

|UN (x̃s; p)− λ(x̃s)|2dxs. (5.9)

This discrepancy measures uniformity of all projections of points onto lower-dimensional
hypercubes.

• Centered L2-star discrepancy (squared) is given by:

CD2 =
∑
∅⊆s⊆S

∫
[0,1]s

|U cN (x̃s; p)− λc(x̃s)|2dxs. (5.10)

Here U cN (x; p) is the empirical distribution function of random vector ζ taking
values in the hyper-rectangle formed by x and its nearest vertex in [0, 1]s (i.e., not
necessarily (0, . . . , 0)) and λc(x) is the volume of that hyper-rectangle.

• Symmetric L2-star discrepancy (squared) is given by:

SD2 =
∑
∅⊆s⊆S

∫
[0,1]s

|UeN (x̃s; p)− λe(x̃s)|2dxs. (5.11)

Here UeN (x; p) is the empirical distribution function of random vector ζ taking
values in the hyper-rectangles formed by x and all even vertices in [0, 1]s (i.e.,
vertices with sum of coordinates even) and λe(x) is the volume of those hyper-
rectangles.

The advantage of using discrepancy-based distances described above is the existence of
closed-form expressions that allow fast computation (see Table 5.1).

Distance Formula

D2

N∑
j,k=1

p(j)p(k)
M∏
d=1

(
1−max{ζ(j)

d , ζ
(k)
d }

)
−2

N∑
j=1

p(j)
M∏
d=1

(
1−(ζ

(j)
d )2

2

)
+
(

1
3

)M
MD2

N∑
j,k=1

p(j)p(k)
M∏
d=1

(
2−max{ζ(j)

d , ζ
(k)
d }

)
−2

N∑
j=1

p(j)
M∏
d=1

(
3−(ζ

(j)
d )2

2

)
+
(

4
3

)M
CD2

N∑
j,k=1

p(j)p(k)
M∏
d=1

(
1 + 1

2

∣∣∣ζ(j)
d −

1
2

∣∣∣+ 1
2

∣∣∣ζ(k)
d − 1

2

∣∣∣− 1
2

∣∣∣ζ(j)
d − ζ

(k)
d

∣∣∣)
−2

N∑
j=1

p(j)
M∏
d=1

(
1 + 1

2

∣∣∣ζ(j)
d −

1
2

∣∣∣− 1
2

∣∣∣ζ(j)
d −

1
2

∣∣∣2)+
(

13
12

)M
SD2

N∑
j,k=1

p(j)p(k)
M∏
d=1

2
(

1−
∣∣∣ζ(j)
d − ζ

(k)
d

∣∣∣)
−2

N∑
j=1

p(j)
M∏
d=1

(
1 + 2ζ(j)

d − 2(ζ(j)
d )2

)
+
(

4
3

)M
Table 5.1: Formulas for estimating discrepancy-based distances.

The other distance we consider here is a modification of multivariate CvM distance

DL2 =
∫

x∈RM
(FN (x; p)− Fξ(x))2

dx, (5.12)
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which we denote by DL2 as it can be seen as a squared L2-norm of difference between
distributions with respect to Lebesgue measure. This distance has been considered in [1] for
the problems of estimating expectations. Note, that when Fξ(x) is a distribution function
of a multivariate uniform 0-1 variable DL2 coincides with the multivariate CvM distance
and with the squared L2-star discrepancy D2. However, for unbounded distributions DL2

is not well-defined. Therefore, we modify the definition of DL2 as follows

D̃L2 =
∫

x∈eΞ (FN (x; p)− Fξ(x))2
dx, (5.13)

where

Ξ̃ =

{
Ξ, if Ξ is bounded,
appropriately defined truncation of Ξ, else.

With this definition the practical formula for D̃L2 is as follows

D̃L2 =
N∑
j=1

N∑
k=1

p(j)p(k)
M∏
d=1

(
bd −max{ξ(j)

d , ξ
(k)
d }

)

− 2
N∑
j=1

M∏
d=1

∫ bd

ξ
(j)
d

Fξd(x)dx+
M∏
d=1

∫ bd

ad

F 2
ξd

(x)dx,

(5.14)

where Ξ̃ =
⊗M

d=1[ad, bd] and Fξ(x) =
∏M
d=1 Fξd(xd).

Analogously to the definition of MD2 we can define MD̃L2

MD̃L2 =
∑
∅⊆s⊆S

∫
xs∈eΞs |FN (x̃s; p)− Fξ(x̃s)|2dxs

=
N∑
j=1

N∑
k=1

p(j)p(k)
M∏
d=1

(
1 + bd −max{ξ(j)

d , ξ
(k)
d }

)

− 2
N∑
j=1

M∏
d=1

(
1 +

∫ bd

ξ
(j)
d

Fξd(x)dx

)
+

M∏
d=1

(
1 +

∫ bd

ad

F 2
ξd

(x)dx

)
,

(5.15)

where Ξ̃s =
⊗

d∈s[ad, bd] and x̃s is a vector with components x̃k = xk if k ∈ s and x̃k = bk
otherwise.
Finally, we propose using weighted versions of D̃L2 and MD̃L2

D̃WL2 =
∫

x∈eΞ
(
FN (x; p)− Fξ(x)

)2

ψ(x)dx, (5.16)

MD̃WL2 =
∑
∅⊆s⊆S

∫
xs∈eΞs

(
FN (x̃s; p)− Fξ(x̃s)

)2

ψ̃(x̃s)dxs, (5.17)

where the weight functions ψ(x) and ψ̃(x) are chosen to prioritize certain regions of param-
eter space. Specifically, let γ = ϑLB

ϑLB+ϑUB
and set

ψ(x) =

 1− γ, if ϑ(ξ(i)) = ϑUB for ξ(i) = arg min
ξ(j)
‖x− ξ(j)‖

γ, otherwise.
(5.18)
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Thus we give larger weight
(

ϑUB
ϑLB+ϑUB

)
to the points in Ξ̃ that lie closer to samples ξ(j)

for which the risk identifier ϑ(ξ) is at the upper bound (“important” samples) and smaller
weight

(
ϑLB

ϑLB+ϑUB

)
to all other points. For the case R[X] = CVaRβ [X] we would have

γ = 0 but we reassign it to be γ = 10−8.
For the MD̃WL2 distance (5.16) we define ψ̃(x̃s) to simply be ψ(x) (i.e., when x is

projected onto the sides of hypercube
⊗M

d=1[ad, bd] it is given the same weight as when not
projected).

If the integrals in (5.16)-(5.17) are discretized using a set of Monte Carlo grid points
{x(i)}Qi=1 then computation of D̃WL2 and MD̃WL2 is performed as follows

D̃WL2 =
N∑
j=1

N∑
k=1

p(j)p(k)V

Q

Q∑
i=1

(
ψ(x(i))

M∏
d=1

1[x(i)
d ≤ max{ξ(j)

d , ξ
(k)
d }]

)

− 2
N∑
j=1

V

Q

Q∑
i=1

(
ψ(x(i))

M∏
d=1

1[x(i)
d ≤ ξ

(j)
d ]Fξd(x(i)

d )

)

+
V

Q

Q∑
i=1

(
ψ(x(i))

M∏
d=1

F 2
ξd

(x(i)
d )

)
(5.19)

and

MD̃WL2 =
N∑
j=1

N∑
k=1

p(j)p(k)
M∏
d=1

(
1 +

Vd
Q

Q∑
i=1

(
ψ(x(i))1[x(i)

d ≤ max{ξ(j)
d , ξ

(k)
d }]

))

− 2
N∑
j=1

M∏
d=1

(
1 +

Vd
Q

Q∑
i=1

(
ψ(x(i))1[x(i)

d ≤ ξ
(j)
d ]Fξd(x(i)

d )
))

+
M∏
d=1

(
Vd
Q

Q∑
i=1

(
ψ(x(i))F 2

ξd
(x(i)
d )
))

.

(5.20)

In the formulas above Vd = bd − ad and V =
∏M
d=1 Vd. Again (for simplicity) it is assumed

that Fξ(x) =
∏M
i=1 Fξi(xi).

6. Numerical experiments. We study the performance of the proposed algorithm
on several example problems.

Example 6.1 Sum of normal variables.
Let

f(ξ) =
M∑
d=1

ξd, ξd ∼ N (µd, σ2
d),

µd = (d− 1)
2

M − 1
, σ2

d = 1 + (d− 1)
2

M − 1
.

Then f(ξ) ∼ N (µ, σ2) where µ =
∑M
d=1 µd = M and σ2 =

∑M
d=1 σ

2
d = 2M . In this case we

have exact formulas for CVaRβ and semideviation of the objective function:

CVaRβ [f(ξ)] = µ+
σϕ(Φ−1(β))

1− β
,
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where ϕ(x) is the standard normal p.d.f. and Φ(·) is the c.d.f. of the standard normal
distribution, and semideviation is given by

SD[f(ξ)] =
σ√
2π
.

We set Ξ̃ =
∏M
d=1[µd − 10σd, µd + 10σd]. �

Example 6.2 Sum of (0,1)-uniform variables.
Let

f(ξ) =
M∑
d=1

ξd, ξd ∼ U(0, 1).

In this case f(ξ) is distributed according to Irwin-Hall distribution with mean µ = M
2 and

c.d.f. given by

Ff(ξ)(x) =
1
M !

bxc∑
k=0

(−1)k
(
M

k

)
(x− k)M .

The CVaRβ(f(ξ)) and SD[f(ξ)] are estimated with Monte Carlo sample of size 108.
�

Example 6.3 Sum of squares of normal variables.
Let

f(ξ) =
M∑
d=1

ξ2
d, ξd ∼ N (µd, σ2

d),

µd = 0, σ2
d = 1.

Then f(ξ) ∼ χ2(M) with mean µ = M . We estimate CVaRβ [f(ξ)] by integrating the inverse
c.d.f. of χ2

M -distribution, and estimate SD[f(ξ)] using Monte Carlo sample of size 108. We
set Ξ̃ =

∏M
d=1[µd − 10σd, µd + 10σd].

�

Example 6.4 Exponential of sum of normal variables.
Let

f(ξ) = exp

(
M∑
d=1

ξd

)
, ξd ∼ N (µd, σ2

d),

µd = −1 +
d− 1
M − 1

, σ2
d = 1.

In this case
∑M
d=1 µd = M−2

2 and
∑M
d=1 σ

2
d = M , and f(ξ) is distributed according to

log-normal distribution f(ξ) ∼ lnN (M−2
2 ,M) with mean

µ = exp

(
M∑
d=1

µd +
1
2

M∑
d=1

σ2
d

)
= exp (M − 1).
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We estimate CVaRβ [f(ξ)] by integrating the inverse c.d.f. of the log-normal distribution,
and estimate SD[f(ξ)] using Monte Carlo sample of size 108. We set Ξ̃ =

∏M
d=1[µd −

10σd, µd + 10σd].
�

Example 6.5 Ackley’s function.
This example is taken from [1]. Let

f(ξ) = −20 exp

−0.2

√√√√ 1
M

M∑
d=1

ξ2
d

− exp

(
1
M

M∑
d=1

cos(2πξd)

)
+ 20 + exp (1),

ξd ∼ N (µd, σ2
d), µd = 0, σ2

d = 1.

The mean, CVaRβ(f(ξ)) and SD[f(ξ)] are estimated with Monte Carlo sample of size
108. We set Ξ̃ =

∏M
d=1[µd − 10σd, µd + 10σd].

�

Ex. M = 2 M = 3 M = 5 M = 10

6.1 2.38 [–] 2.86 [–] 2.23 [–] 1.83 [–]

0.35 [D2] 1.03 [SD2] 1.70 [CD2] 2.30 [LR]

0.92 [D̃WL2] 2.97 [SD2] 1.31 [SD2] 5.60 [CD2]

6.2 1.07 [–] 1.82 [–] 1.00 [–] 0.93 [–]

0.15 [CD2] 0.67 [SD2] 0.79 [CD2] 1.36 [MD̃WL2]

0.38 [D2] 1.47 [SD2] 0.68 [SD2] 2.90 [SD2]

6.3 4.63 [–] 4.79 [–] 3.62 [–] 2.76 [–]

1.34 [D̃L2] 1.40 [MD̃WL2] 5.17 [D̃L2] 8.13 [LR]

1.81 [D̃WL2] 2.99 [MD2] 3.62 [CD2] 2.72 [MD2]

6.4 10.8 [–] 15.5 [–] 28.8 [–] 65.4 [–]

3.81 [MD̃L2] 10.0 [LR] 28.3 [CD2] 33.3 [LR]

4.29 [D̃WL2] 18.8 [SD2] 48.7 [CD2] 55.6 [CD2]

6.5 1.75 [–] 1.26 [–] 0.89 [–] 0.78 [–]

0.45 [D̃WL2] 0.53 [MD̃L2] 1.41 [D̃WL2] 2.55 [LR]

0.49 [MD̃WL2] 1.31 [D2] 0.91 [CD2] 0.88 [MD2]

Table 6.1: Best relative errors (%) in estimation of CVaRβ with β = 0.9 for examples 6.1-
6.5. In brackets the distance that provided best estimate. For each example the first row
corresponds to plain Monte Carlo sampling, the second - RIS with KDE, the third - RIS
with AR.

6.1. Results. We test algorithm 3.1 on the problems of estimating risk functions in-
troduced in Section 2 with the objective functions described in Examples 6.1-6.5. We report
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M = 2 M = 3 M = 5 M = 10
Example 6.1 65.7/70.0 63.8/68.8 61.1/56.8 58.0/45.6
Example 6.2 62.9/77.0 64.5/73.6 61.0/62.6 58.3/35.0
Example 6.3 60.3/67.6 63.6/60.0 67.0/44.8 72.3/35.6
Example 6.4 65.5/69.8 62.7/71.6 61.3/59.6 57.6/47.6
Example 6.5 59.2/63.2 57.3/58.8 62.4/43.0 75.4/33.4

Table 6.2: Percentage of samples above VaRβ when estimating CVaRβ (out of 500)
(KDE/AR). For KDE and AR percentages reported are average over 10 runs for the best
distance estimate from Table 6.1. For MC corresponding value is 10.2%.

Ex. M = 2 M = 3 M = 5 M = 10

6.1 2.86 [–] 1.99 [–] 2.37 [–] 1.43 [–]

0.14 [SD2] 0.54 [CD2] 0.77 [D̃L2] 0.89 [MD2]

0.21 [MD̃WL2] 0.51 [SD2] 0.87 [CD2] 0.61 [MD̃L2]

6.2 1.29 [–] 1.45 [–] 1.05 [–] 0.84 [–]

0.05 [MD̃L2] 0.25 [CD2] 0.51 [CD2] 0.80 [MD2]

0.06 [MD̃WL2] 0.23 [SD2] 0.24 [SD2] 0.42 [CD2]

6.3 3.76 [–] 3.26 [–] 3.09 [–] 2.49 [–]

0.59 [MD̃WL2] 1.04 [MD̃L2] 3.54 [MD̃WL2] 4.70 [LR]

0.82 [MD̃WL2] 0.95 [D̃WL2] 1.25 [D̃L2] 1.23 [D̃L2]

6.4 11.4 [–] 12.1 [–] 27.6 [–] 54.1 [–]

2.06 [D̃WL2] 10.2 [D̃WL2] 21.0 [MD2] 22.5 [LR]

1.68 [D̃WL2] 10.1 [SD2] 20.2 [SD2] 43.3 [MD̃L2]

6.5 1.31 [–] 1.07 [–] 0.79 [–] 0.74 [–]

0.16 [D̃L2] 0.27 [D̃L2] 0.56 [D̃L2] 1.78 [D̃L2]

0.23 [MD̃WL2] 0.31 [MD̃L2] 0.30 [D̃L2] 0.39 [MD̃L2]

Table 6.3: Best relative errors (%) in estimation of mean plus CVaRβ with β = 0.9 for
examples 6.1-6.5. In brackets the distance that provided best estimate. For each example
the first row corresponds to plain Monte Carlo sampling, the second - RIS with KDE, the
third - RIS with AR.

results for using both KDE and AR for sample generation in Tables 6.1-6.4. For KDE
samping we use Gaussian kernel (with unbounded support), and apply the same truncation
to the support of φ(ξ) as we apply to ρ(ξ) (see definitions of Ξ̃ above). The sample sizes are
taken to be N0 = N1 = · · · = NS = 100 with S = 4. The initial N0 samples are generated
using Latin Hypercube Sampling (LHS). The results reported are for the last sample of size
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Ex. M = 2 M = 3 M = 5 M = 10

6.1 2.14 [–] 2.10 [–] 1.67 [–] 1.49 [–]

0.11 [MD̃WL2] 0.22 [MD2] 0.27 [CD2] 0.62 [D̃L2]

0.08 [D̃WL2] 0.15 [SD2] 0.12 [D̃L2] 0.22 [MD̃WL2]

6.2 1.32 [–] 0.74 [–] 0.70 [–] 0.55 [–]

0.03 [MD̃L2] 0.11 [CD2] 0.19 [MD̃WL2] 0.26 [MD̃WL2]

0.02 [SD2] 0.07 [CD2] 0.12 [CD2] 0.12 [CD2]

6.3 3.65 [–] 3.78 [–] 3.04 [–] 1.60 [–]

0.34 [D̃L2] 0.30 [D̃L2] 0.48 [D̃L2] 3.00 [MD̃WL2]

0.54 [D̃L2] 0.62 [CD2] 0.67 [MD2] 0.73 [D̃L2]

6.4 6.97 [–] 15.4 [–] 23.9 [–] 57.3 [–]

2.56 [D̃L2] 4.89 [SD2] 12.7 [LR] 39.7 [D̃L2]

1.94 [SD2] 4.81 [D̃WL2] 12.8 [MD̃WL2] 44.3 [MD2]

6.5 1.47 [–] 1.15 [–] 0.72 [–] 0.70 [–]

0.09 [D̃WL2] 0.15 [MD̃WL2] 0.15 [MD̃WL2] 0.64 [MD̃WL2]

0.08 [D̃WL2] 0.15 [CD2] 0.19 [MD̃WL2] 0.21 [MD̃WL2]

Table 6.4: Best relative errors (%) in estimation of mean plus semideviation for examples
6.1-6.5. In brackets the distance that provided best estimate. For each example the first
row corresponds to plain Monte Carlo sampling, the second - RIS with KDE, the third -
RIS with AR.

500. The error reported is the relative error expressed as a percentage, i.e.,

e =
|R[f(ξ)]−R[f(ΞS)]|

|R[f(ξ)]|
× 100%,

where R[f(ξ)] represents the true value of risk function and R[f(ΞS)] the estimate after
S steps of algorithm 3.1.The errors are averaged over 10 independent runs; i.e., the errors
reported are the average errors rather than the errors of the average estimates. The tables
present only the smallest errors among all the distances used for adjusting probabilities,
which are D2, MD2, SD2, CD2, D̃L2, MD̃L2, D̃WL2, and MD̃WL2. In addition to using
the distance minimization method of Section 5 we include results obtained using likelihood
ratios (3.1) (indicated as LR). The tables also present errors when using standard Monte
Carlo sampling for the last four steps, i.e., initial LHS samples are combined with MC
samples for a full sample of size 500. For the weighted distances (5.19)-(5.20) the grid
points {x(i)}Qi=1 are generated using Sobol’ sequence generator with Q = 105.

The samples generated for Example 6.2 for the case M = 2 are plotted in Figures
6.1(a)-6.1(f). The line in these figures corresponds to f(ξ) = VaRβ [f(ξ)] (true value) for
the cases of pure CVaR and mean-CVaR risk functions and f(ξ) = E[f(ξ)] (true value) for
the case of mean-semideviation. Figures 6.1(a) show 6.1(c), 6.1(e) the samples generated
using KDE sampling with black squares corresponding to the samples from the second to
last step lying below the estimate of VaRβ [f(ξ)] (or E[f(ξ)]) at that step, red stars - samples
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from the second to last step lying above the estimate of VaRβ [f(ξ)] (or E[f(ξ)]) at that step,
and blue circles - samples generated at the last step. The distance used is D2. The same
convention is used in Figures 6.1(b), 6.1(d), 6.1(f), however, the samples here are generated
using AR strategy. Comparing figures on the left with those on the right we observe that
KDE places samples not only directly above the lines but also just below as is expected
since we use smooth kernels. At the same time when using AR the samples tend to be more
clustered which might be problematic if the estimate of VaR (or E[f(ξ)]) is not sufficiently
accurate.

Results presented in Tables 6.1-6.4 show that, in general, the errors in estimates obtained
with the Algorithm 3.1 increase with the dimensionality of the random inputs, and, thus,
the advantage of it over plain Monte Carlo declines. In most cases the errors are within
1-3% with the notable exception of examples 6.3 and 6.4. In both cases the distributions of
objective functions have long tails, which makes them hard to approximate accurately. The
effect is especially pronounced when estimating CVaRβ . For these examples the estimates
obtained with plain Monte Carlo sampling also exhibit large errors.

Another notable outcome is that in cases when the samples are generated using AR,
the errors tend to be smaller for higher dimensions as compared to the errors when KDE is
used. At the same time the percentage of samples in the upper tail tends to be smaller for
AR. Table 6.2 shows the percentage of samples above VaRβ when estimating CVaRβ using
KDE and AR.

As far as different types of distances used for distribution matching the best results
when using KDE for sample generation are mostly achieved with L2-type distances 5.13-5.15
and their weighted versions 5.16-5.17. Interestingly, for the pure CVaR and mean-CVaR risk
functions the best results in high-dimensional case are often obtained by using the likelihood
ratio approach. The LR approach, however, often fails for the mean-semideviation case due
to large errors in estimation of the mean coming from the fact that LR weights do not sum
to 1. The distances 5.8-5.11 utilizing Rosenblatt transformation tend to work better with
AR sampling. There is, however, no clear winner, and it is not obvious which approach
to adjusting the probabilities of the samples to take. We view this question as a main
bottleneck for the proposed method.

Weighted distances 5.16-5.17 tend to perform better than their unweighted variants
5.13-5.15 for the cases when the volumes of important regions are two-thirds or less of the
total volume (see Table 6.5 for the relevant information).

M = 2 M = 3 M = 5 M = 10

Example 6.1 0.45 0.47 0.47 0.58

Example 6.2 0.08 0.12 0.1 0.18

Example 6.3 0.96 0.99 0.99 0.98

Example 6.4 0.48 0.47 0.55 0.59

Example 6.5 0.96 0.99 0.98 0.96

Table 6.5: Volumes of “important” regions (for CVaRβ) as fractions of Ξ̃ for distances
5.16-5.17.
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(a) KDE samples for estimating CVaRβ .
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(b) AR samples for estimating CVaRβ .
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(c) KDE samples for estimating mean-CVaRβ .
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(d) AR samples for estimating mean-CVaRβ .
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(e) KDE samples for estimating mean-SD.

ξ
1

0 0.5 1

ξ 2

0

0.2

0.4

0.6

0.8

1

(f) AR samples for estimating mean-SD.

Fig. 6.1: Samples for example 6.2 with M = 2 after step 4. Black squares are the samples
from previous step that lie below the estimate of VaRβ for CVaRβ and mean-CVaRβ , and
below the estimate of expected value for mean-SD, red stars are the samples from the
previous step that lie above the estimate of VaRβ for CVaRβ and mean-CVaRβ , and above
the estimate of expected value for mean-SD, and blue circles are the new samples generated
at step 4. The lines correspond to f(ξ) = VaRβ [f(ξ)] for CVaRβ and mean-CVaRβ , and
f(ξ) = E[f(ξ)] for mean-SD. Here β = 0.9.
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7. Conclusions and future work. In this work we proposed an algorithm for esti-
mating risk functions of random quantities of interest. We assume that the quantities of
interest are expensive to estimate, e.g., require solving a PDE. Therefore, our algorithm
intends to reduce the number of samples (i.e., PDE solves) required to estimate the risk
functions. We consider the risk functions that include some notion of risk-averseness and
are especially hard to compute in practice due to dependence on rare events (CVaR). Our
algorithm is based on conjugate duality theory of convex risk functions and resembles non-
parametric importance sampling.

We have benchmarked the proposed algorithm on simple example problems with known
statistics. The results indicate the general effectiveness of the algorithm for problems with
a few random inputs, however, more research is required for it to be useful in higher-
dimensional cases.

One part of the algorithm is concerned with the generation of samples in the regions
that are relevant to a given risk function. We have utilized KDE and AR approaches to this
problem achieving a large increase in the number of said samples.

Another important part of the proposed algorithm is adjusting the probabilities of gen-
erated samples. We have tested several approaches to this problem including the traditional
likelihood ratio approach and distribution matching approaches with various distance mea-
sures. More research is required in this direction, especially for the higher-dimensional
problems, as the proposed approach to distribution matching becomes more difficult, and
the likelihood ratio approach in some cases fails completely.

Note that the assumption of independence of random inputs made here in several places
is not essential for the applicability of the proposed method and was mainly used as a
simplification for defining some of the distance measures in Section 5.

In future work we want to consider building surrogates of the quantities of interest and
using them to obtain probabilities for the samples produced by our algorithm. In other
words we would like to substitute the problem of (multivariate) input distribution matching
with the problem of matching the distribution of the surrogate of the quantity of interest.
As indicated in Section 5 matching one-dimensional distributions is very easy, however, the
complexity is shifted to the problem of building a surrogate model and quantifying its error.
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INFORMATION THEORETIC REFINEMENT OF SEISMIC ARRIVAL
TIME WITH UNCERTAINTY ESTIMATION

CHARLIE VOLLMER ∗, MAX CHEN † , AND DAVID STRACUZZI ‡

Abstract. Estimation of Signal Arrival Times for seismic sensors is the fundamental step before all
downstream analyses of seismic activity. Any errors in the estimation are further exacerbated as the errors
are propagated through location-detecting earth models. In this paper we detail a general framework for
detecting seismic signal arrival time picks along with full estimation of their associated uncertainty. Using
an STA/LTA threshold algorithm we can identify an Onset Search Window to be further refined through an
Information Theoretic approach to estimate a precise Arrival Time Pick. Time Series statistical models are
fit through an iterative algorithm to maximize the likelihood of the Arrival Time Pick estimate. The models
can then be sampled through a Monte Carlo scheme to produce a full a posteriori estimate of uncertainty
of Arrival Time of the seismic signal.

1. Signal Detection. Signals in the processed data channels are detected with an
algorithm that computes the ratio of the short-term energy to the long-term energy: Short
Term Average vs Long Term Average (STA/LTA)[4, 5]. Subsequently, a threshold is es-
tablished for each detection channel in the associated beam recipe, that, when exceeded,
identifies a potential “detection.” A detection is declared when the STA/LTA thresholds for
a specified number of channels (typically one) have been exceeded. When the STA/LTA
is above the threshold for a channel, that channel is in a “detecting state.” A channel in
a detecting state remains in that state until the STA/LTA value stays below the threshold
for a specified time interval. Output from the STA/LTA algorithm is a window of raw data
points which contains a time series of two distinct signals: a signal of pure noise that changes
at some time point into a noisy seismic signal reading (Figure 1.1).

The STA/LTA algorithm is designed for reliable detection of events, but only provides a
crude estimate of the actual Onset/Arrival time of the event. This paper proposes a method
of refining this crude estimate as well as providing a means of estimating a probability
distribution around that estimate: a full measure of certainty.
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Fig. 1.1: Onset Search Window output from STA/LTA Detection
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2. Estimating Arrival Time. As was briefly outlined in Section 1, the initial STA/LTA
algorithm gives a reliable -yet crude- detection of the arrival of a signal at the seismic sen-
sor. The output from this initial first-pass algorithm is the Onset Search Window, shown
in Figure 1.1.

This section will detail the methodological approach to refining the initial Arrival Time
of the seismic signal, at the sensor. Our approach is computationally efficient and takes
advantage of well-founded theory in statistical time series analysis. By following this ap-
proach, we also are afforded the luxury of being able to estimate a distribution over the
Arrival Time; thus providing us a complete a posteriori estimate of the uncertainty of our
Arrival Time estimate.

2.1. Conceptual Approach to Estimating Arrival Time. Since the initial detec-
tion output from the STA/LTA algorithm is a window of time series data which corresponds
to a noise signal at which some time point becomes a signal with a noise component (Figure
1.1), we have the foundations to build an efficient algorithm to pinpoint the exact Arrival
Time of the seismic signal.

We know that the initial data points in this time series are simply noise. Then -at some
time point- the sensor begins to receive and record a signal composed of a signal process
along with a noise component. Thus, we want to take advantage of these assumptions and
simply fit two models, M1 and M2, corresponding to each of the noise and signal data,
respectively, and identify the time point in the series that corresponds to the best fit of these
two models.

This approach suggests the use of a sliding window.

k

M1
M2

Fig. 2.1: Sliding Window Approach to Estimating Arrival Time

As shown in Figure 2.1, for every value of k, for k = 0, ..., T , we fit the noise model,M1,
to all data points yt for t < k, and the signal model, M2, to all data points yt for t ≥ k.

Our estimate of the Arrival Time, k̂, is simply the k that provides the “best fit” of the
two models, M1 and M2, simultaneously. Our method provides a description of “best fit”
under an Information Theoretic framework.
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2.2. Proposed Initial Time Series Models. Our approach uses two models, M1

and M2, to effectively model the time series data that the seismic sensor is constantly
recording. The first model,M1, is used for the purely noisy reading of the sensor. Since this
is noise, it is natural to first model this as white noise: that is, as simple Gaussian random
variables, each data point being an independent and identically distributed realization from
a Gaussian (Normal) probability distribution with zero mean and finite variance, to be
estimated from the data at each individual station. M1 is specified in the following:

Yt ∼ N(0, σ2
n) (2.1)

where σ2
n <∞ for t = 1, ..., k − 1.

The second model is used to model the generative process of the true seismic signal.
Since we can assume that the sensor will record a noisy measurement of this true signal, the
model must also explicitly model both noise and signal components during this time period.

Under the current proposal, we are assuming that while a signal is arriving and reaching
the sensor, a week signal will be followed by a weak signal, whereas a strong signal should
immediately be followed by a strong signal. This is the same as assuming a smooth func-
tional form to the signal, apart from the noisy component. We thus have a strong, natural
justification for using an auto-regressive statistical model for modeling the seismic signal.
Therefore, we will model the latter part of the Onset Search Window data points using an
auto-regressive time series model with dependency between p adjacent points; AR(p) [2].
M2 is specified in the following:

Yt = c+
p∑
i=1

φiYt−i + εt (2.2)

where εt ∼ N(0, σ2
s) for t = k, ..., T . Here, σ2

s is the finite variance of the noise component
of the signal model.

Due to this explicit specification of our models and noise distributions, Equations 2.1
and 2.2, we immediately have likelihoods for our data and can use them to estimate not
only the Arrival Time of the signal, but also the uncertainty around it. The Arrival Time
estimate is detailed in the following section.

2.3. Information Theoretic Refinement of Arrival Time Estimate. The idea
of refinement of the Arrival Time Estimates, from the given Onset Search Window from the
STA/LTA algorithms, is based on evaluating the difference between the statistical models
specified a priori of both the signal and noise processes and the observed statistics from
our time series data. This paper proposes using an Akaike Information Criterion (AIC),
[1], approach to measure the differences between these specified prediction models and the
observed time-series data. AIC is a generalized entropy that provides a measure of the
information difference between a mathematical process and a set of observations. The
general form for AIC is the following:

AIC(M) = −2 logL(M) + 2ρ(M) (2.3)

where L(M) is the likelihood of model M, and ρ(M) is the complexity of the model (e.g.
degrees of freedom).

In the following section we detail the likelihoods of our probability models, as well as
how to implement our method.



100 Seismic Signal Arrival Estimation

2.3.1. Stationary AR(1) Model. For clarity, what follows is the treatment of
a stationary autoregressive model of order one, AR(1), easily generalizable to larger depen-
dence lags. A time series, Yt, following this process can be written as

Yt = c+ φYt−1 + εt, (2.4)

where εt ∼ N(0, σ2), θ = (c, φ, σ2)′, and |φ| < 1 for t = 1, ..., T .

Let It = {Y0, ..., Yt}. Since there is clearly dependence, we have that conditioned on
It−1,

Yt|It−1 ∼ N(c+ φYt−1, σ
2) (2.5)

for t = 1, ..., T .
The conditional density is

f(Yt, Yt−1, θ) = (2πσ2)−1/2 exp{− 1
2σ2

(Yt − c− φYt−1)2} (2.6)

for t = 2, ..., T .
To derive the density of Y1, we use the following property of stationarity:

E(Y1) =
c

1− φ
(2.7)

Var(Y1) =
σ2

1− φ2
. (2.8)

It follows that

Y1 ∼ N
(

c

1− φ
,

σ2

1− φ2

)
. (2.9)

The density of Y1 is

f(y1|θ) =
(

2π
σ2

1− φ2

)−1/2

exp{−1− φ2

2σ2

(
y1 −

c

1− φ

)2

}. (2.10)

Therefore, we have that the conditional log-likelihood function is

T∑
t=2

ln f(yt|tt−1, θ) =

− (T − 1)
2

ln(2π)− (T − 1)
2

ln(σ2)− 1
2σ2

T∑
t=2

(yt − c− φyt−1)2. (2.11)

This is the same as the log-likelihood of a simple linear regression model with normal
errors. Therefore, the conditional Maximum Likelihood Estimates (MLEs) for c and φ are
identical to the least squares estimates.
The conditional MLE for σ is

σ̂2
MLE = (T − 1)−1

T∑
t=2

(yt − ĉCMLE − φ̂CMLEyt−1)2. (2.12)
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The marginal log-likelihood for the initial value Y1 is

ln f(y1|θ) = −1
2

ln(2π)− 1
2

ln
(

σ2

1− φ2

)
−
(

1− φ2

2σ2

)(
y1 −

c

1− φ

)2

. (2.13)

Using all of this, the exact log-likelihood function is

l(θ|y) = lnL(θ|y) = −T
2

ln(2π)− 1
2

ln
(

σ2

1− φ2

)
− 1− φ2

2σ2

(
y1 −

c

1− φ

)2

− (T − 1)
2

ln(σ2)− 1
2σ2

T∑
t=2

(yt − c− φyt−1)2. (2.14)

2.3.2. Additive Likelihood of Noise-to-Signal Time Series. Suppose we observe
T data points on a seismic sensor, Yt, for t = 1, ..., T . We assume that there exists a time
point α ∈ {t : t = 1, ..., T}, such that for all time points t ≤ α we record only noise. For all
time points t after α, α < t ≤ T , we observe both a seismic signal and a noise component.
By independence, we have directly that

f(Y1, ..., YT |θ1, θ2) = f(Y1, ..., Yk|θ1)f(Yk+1, ..., YT |θ2). (2.15)

Therefore, to find the MLE of the arrival time pick, we need to solve the following
explicit optimization problem:

Find k that satisfies the following

arg max
k
{l(θ1|Y1, ..., Yk) + l(θ2|Yk+1, ..., YT )} (2.16)

By our definitions of M1 and M2 , Equations 2.1 and 2.2, their log-likelihoods are

l(θ1|y1, ..., yk) = −k
2

ln(2π)− k

2
ln(σ2

n)− 1
2σ2

n

k∑
t=1

y2
t (2.17)

l(θ2|yk+1, ..., yT ) = −T − k
2

ln(2π)− 1
2

ln
(

σ2
s

1− φ2

)
− 1− φ2

2σ2
s

(
yk+1 −

c

1− φ

)2

− (T − k − 1)
2

ln(σ2
s)

− 1
2σ2

s

T∑
t=k+2

(yt − c− φyt−1)2 (2.18)

Therefore, we have the following AIC criterion to minimize for our Arrival Time Estimation:
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l = l(θ1|Y1, ..., Yk) + l(θ2|Yk+1, ..., YT )

= −k
2

ln(2π)− k

2
ln(σ2

n)− 1
2σ2

n

k∑
t=1

y2
t −

T − k
2

ln(2π)

− 1
2

ln
(

σ2
s

1− φ2

)
− 1− φ2

2σ2
s

(
yk+1 −

c

1− φ

)2

− (T − k − 1)
2

ln(σ2
s)− 1

2σ2
s

T∑
t=k+2

(yt − c− φyt−1)2 (2.19)

3. Estimating Uncertainty of Arrival Time Estimate. By specifying a model
form for both our noise and signal time series,M1 andM2, not only do we have a rigorous
way of refining the Arrival Time Estimates of the signals from the STA/LTA algorithm
output, but we also have a manner of using a Monte Carlo sampling scheme to derive an a
posteriori distribution of the Arrival Time Estimate.

3.1. Sampling from Statistical Time Series Models. Since we are assuming a
known functional form of the generative stochastic processes of our observed time series
data, for both the noise and signal processes, we are able to easily generate random series
of data.after fitting the models M1 and M2, as specified in Equations 2.1 and 2.2, and
detailed in Equation 2.12.

3.1.1. Sampling from Noise Process. After fitting the noise model to the observed
data for a particular station and sensor, we can then easily generate draws from the Gaussian
distribution with the given mean and standard deviation values estimated:

0 20 40 60 80 100
20

15

10

5

0

5

10

15

20

25
Random Draws from Stochastic Noise Process

Draw 1 from Random Noise
Draw 3 from Random Noise
Draw 3 from Random Noise

Fig. 3.1: Random Draws from Estimated Noise Process

The noise process can also follow a functional form that captures dependence -when
appropriate. This would not cause any change to the algorithm itself, apart from swapping
the likelihood of the white noise model for the dependence model.
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3.1.2. Sampling from Signal Process. Just as easily as we are able to sample
from the estimated Gaussian distribution for the noise process, we are also able to draw
samples according to the estimated AR(p) process. This process has both a noise and signal
component explicitly modeled, and it is clear to see a dependence in the following figure of
an AR(2) process:
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Fig. 3.2: Random Draws from Estimated Signal Process

Code to generate random draws from a stochastic AR(p) process is provided in the
appendix of this document. The code generalizes the AR(p) to and ARMA(p,q) process,
which is a time series model that explicitly incorporates an auto-regressive as well as moving
average components, [2].

3.2. A Monte Carlo Sampling Scheme. Once we have established a method for
sampling from both the noise and signal processes, we now have an immediate iterative
method of estimating an a posteriori distribution of the Arrival Time Estimate.

Figure 3.3 illustrates how we simply make consecutive draws from each of the signal and
noise processes and -for each pair of draws- we run the estimation algorithm of the Arrival
Time detailed in Section 2 and illustrated in Figure 3.4.

In this manner, for each draw of the complete time series, we get a new estimate, k′,
of the Arrival Time. As the two processes, noise and signal, get more similar, we will see
confusion in our Arrival Time Estimation algorithm, giving more varied estimates: a heavier
tailed distribution. As the two processes diverge from one another, we will see less variation
in our Arrival Time estimates, giving a tighter distribution.

As seen in Figure 3.5, we have a complete posterior distribution of our Estimated Arrival
Time, for further use in a downstream analysis of the seismic signal. A Kernel Density
Estimate (KDE) is shown in Figure 3.5, as an approximation of the posterior distribution.
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Fig. 3.4: Estimating Arrival Time for a Random Draw from Complete Process



C. Vollmer, M. Chen, and D. Stracuzzi 105

50 60 70 80 90 100 110
0.00

0.01

0.02

0.03

0.04

0.05

0.06
Arrival Time Estimates, k'

Fig. 3.5: Posterior Density Estimate of the Arrival Times, k′



106 Seismic Signal Arrival Estimation

4. Continued/Further Development. While the development of the above estima-
tion methodology, algorithms, and process is more or less complete, there is still quite a fair
bit of refinement, validation, and the possibility of extensions to be explored in this work.
Most of the immediately addressable topics include validation of the statistical models, cal-
ibration of the validated models, and extensions to the families of probability models used.
These subdomains for future work are detailed in the following subsections.

4.1. Validation of Statistical Time Series Models. There are strong assumptions
that need to be made when choosing the functional form of the statistical models, M1 and
M2, used to model the true, natural, generative stochastic processes. While motivated
by physical processes their physical properties, the assumptions of White Noise and Auto-
Regressive signal both need to be validated.

Noise could plausibly be of a functional form with a dependence structure. The true
seismic signal could also be of a form not well-captured by an auto-regressive statistical
model.

Of concern are things like particular devices at particular stations, as well as particular
function forms for different arriving signals; i.e. ice sheet movement, seismic activity, human-
induced explosions, etc. These concerns are also dealt with under the area of calibration,
below.

4.2. Calibration of Statistical Time Series Models. While each of the models,
M1 and M2, and their parameters need to be estimated from the actual, observed data,
they also need to be appropriately calibrated to their:

1. particular station
2. particular machine/sensor
3. variety of signal types; ie. ice sheet, seismic activity, explosions, etc.

It is quite feasible that each sensor records a different type of background noise and
that the structure of such is distinct for each sensor. It is also plausible that each location
has particularities to the data recorded. Perhaps different dependence structures need to
be accounted for, and perhaps the signal-to-noise ratios are drastically different between
stations. It is also fairly natural to assume that the form of the signals will be different
depending on whether the waves be propagated due to natural or human-made causes.

Each of these points needs to be explicitly addressed and accounted for by any tool
implementing the methodology detailed in this paper.

4.3. Immediate Extensions to Auto-Regressive Time Series Models. While
the statistical models outlined in this paper were auto-regressive models, Equation 2.2,
these models can easily be extended to include models of the moving average family of time
series, as well. The q’th order moving average term in a time series model is a past
error (multiplied by a coefficient), denoted MA(q):

Yt = c+ εt +
q∑
i=1

θiεt−i (4.1)

The generalization of Equations 2.2 and 4.1 is the ARIMA(p,d,q) model, which includes
auto-regressive terms of lag p, moving average terms of lag q, and d differencing operations,
[2]:
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Yt = c+
p∑
i=1

φiYt−i +
q∑
i=1

θiεt−i + εt (4.2)

Python code (Python Software Foundation, https://www.python.org/), below, to simu-
late random draws from a stochastic time series of form ARIMA(p,d,q), is also provided.
This code relies on the Numpy [3] package in Python.

Notice: an AR(2) process is equivalent to an ARIMA(2,0,0) time series.



108 Seismic Signal Arrival Estimation

1

2 """
3 Random generation of Gaussian ARMA(p,q) time series.
4

5 phi: An array of length p with the AR coefficients
6 (the AR part of the ARMA model).
7 theta: An array of length q with the MA coefficients
8 (the MA part of the ARMA model).
9 sigma: Standard deviation of the Gaussian noise.

10 n: Length of the returned time-series.
11 burnin: Number of data points that are going to be discarded
12 (the higher the better) to avoid dependence of the
13 ARMA time-series on the initial values.
14 """
15

16 from numpy import append,array
17 from numpy.random import normal
18 def ARMAgenerator(phi,theta,sigma,n,burnin=0,verbose=0):
19 l=max(len(phi),len(theta))
20 if(burnin==0):
21 burnin=10*l # Burn-in elements!
22 w=normal(0,sigma,n+burnin)
23 ARMA=array([])
24 s=0.0
25 l=max(len(phi),len(theta))
26 for i in range(n+burnin):
27 if(i<l):
28 ARMA=append(ARMA,w[i])
29 else:
30 s=0.0
31 for j in range(len(phi)):
32 s=s+phi[j]*ARMA[i-j-1]
33 for j in range(len(theta)):
34 s=s+theta[j]*w[i-j-1]
35 ARMA=append(ARMA,s+w[i])
36 if(verbose!=0):
37 print(’Measured standard deviation: ’
38 +str(sqrt(var(w[burnin:]))) )
39 return ARMA[burnin:]
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OPTIMAL EXPERIMENTAL DESIGN USING A CONSISTENT
BAYESIAN APPROACH

SCOTT N. WALSH∗, TIM M. WILDEY† , AND JOHN D. JAKEMAN‡

Abstract. We consider the utilization of a computational model to guide the optimal acquisition
of experimental data to inform the stochastic description of model input parameters. Our formulation
is based on the recently-developed consistent Bayesian approach for solving stochastic inverse problems,
which seeks a posterior probability density that is consistent with the model and the data in the sense
that the push-forward of the posterior (through the computational model) matches the observed density
on the observations almost surely. Given a set a potential observations, our optimal experimental design
(OED) seeks the observation, or set of observations, that maximizes the expected information gain from the
prior probability density on the model parameters. We discuss the characterization of the space of observed
densities and a computationally-efficient approach for rescaling observed densities to satisfy the fundamental
assumptions of the consistent Bayesian approach. Numerical results are presented to compare our approach
with existing OED methodologies using the classical/statistical Bayesian approach and to demonstrate our
OED on a set of representative PDE-based models.

1. Introduction. Experimental data is often used to infer valuable information about
parameters for models of physical systems. However, the collection of experimental data
can be costly and time consuming. For example, exploratory drilling can reveal valuable
information about subsurface hydrocarbon reservoirs, but each well can cost upwards of
tens of millions of US dollars. In situations such as this, we can only afford to gather some
limited amount of experimental data. Hence, we are motivated to design experiments in an
optimal way, i.e., choose some limited amount of experimental data to maximize the value
of the experiment.

We are primarily interested in the situation where experimental data is not yet available
to guide the optimal experimental design (OED). Therefore, we can only seek to maximize
the expected information gain, i.e., the average information gain over all possible realizations
of a given set of experimental data. The determination of an OED is based largely on the
computational model of the physical system. With no experimental data available, the
physics and sensitivities of the computational model greatly impact our definition of the
OED.

Determining optimal data to infer information about model input parameters is an
emerging field of research. A general review of Bayesian experimental design is given
in [7] and the Bayesian analogues of the so-called alphabetical design criteria are intro-
duced and examined. In [8, 9] Bayesian OED is developed for physically-realistic and hence
computationally-intensive models, which motivates the authors to explore the use of sur-
rogate models to accelerate the computation of the expected information gain. In [3] the
authors accelerate the computation of the expected information gain by approximating the
posterior density with a truncated Gaussian density. In the context of OED for inference,
analogues of the alphabetic optimality criterion for linear models have also been applied
to nonlinear models [1, 2, 11]. In a recent work [6], an OED based on a measure theoretic
approach for solving stochastic inverse problems is developed. This approach only uses local
linear approximations of QoI maps and their singular values to approximate the OED.

The approach taken in this paper is similar to [8] in that we seek an OED that max-
imizes the expected information gain from a prior to a posterior over the set of possible
observational densities. In [8], the authors use the classical/statistical Bayesian approach
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for stochastic inference (see e.g., [13]) whereby an error model is used to define a likelihood
which is then used to compute the posterior. Our OED is based on the consistent Bayesian
approach introduced in [5], which utilizes the push-forward of the prior to define a posterior
density. This posterior is consistent with the model and the data in the sense that the push-
forward of the posterior (through the computational model) matches the observed density
almost surely. We direct the interested reader to [5] for a discussion on the differences
between the consistent and classical Bayesian approaches.

The remainder of this paper is outlined as follows. In Section 2 we present the consis-
tent Bayesian method for solving stochastic inverse problems. In Section 3 we discuss the
information content of an experiment, and present our optimal experimental design formu-
lation based upon expected information gain. During the process of defining the expected
information gain of a given experimental design, care must be taken to ensure that model
can predict all of our potential observed data. In Section 4 we discuss situations for which
this assumption is violated and means for avoiding these situations. Numerical examples
are presented in Section 5 and concluding remarks are provided in Section 6.

2. A Consistent Bayes formulation for stochastic inverse problems. In this
section we present an overview of the consistent Bayes formulation of the stochastic inverse
problem. This derivation of the posterior differs from the statistical Bayesian counterpart
(see e.g. [13]) in that the posterior satisfies a consistency requirement, i.e., the posterior is
consistent with the model and the observed data. In Section 3 we present numerical results
for a simple nonlinear system to illustrate this consistency requirement.

2.1. Notation, Assumptions, and a Stochastic Inverse Problem. Let M(Y, λ)
denote a deterministic model with solution Y (λ) that is an implicit function of model
parameters λ ∈ Λ ⊂ Rn. The set Λ represents the largest physically meaningful do-
main of parameter values, and, for simplicity, we assume that Λ is compact. In practice,
modelers are often only concerned with computing a relatively small set of quantities of
interest (QoI), {Qi(Y )}mi=1, where each Qi is a real-valued functional dependent on the
model solution Y . Since Y is a function of parameters λ, so are the QoI and we write
Qi(λ) to make this dependence explicit. Given a set of QoI, we define the QoI map
Q(λ) := (Q1(λ), · · · , Qm(λ))> : Λ → D ⊂ Rm where D := Q(Λ) denotes the range of
the QoI map.

Assume (Λ,BΛ, µΛ) and (D,BD, µD) are measure spaces. We assume BΛ and BD are
the Borel σ-algebras inherited from the metric topologies on Rn and Rm, respectively. The
measures µΛ and µD are volume measures.

We assume that the QoI map Q is at least piecewise smooth implying that Q is a
measurable map between the measurable spaces (Λ,BΛ) and (D,BD). For any A ∈ BD, we
then have

Q−1(A) = {λ ∈ Λ | Q(λ) ∈ A} ∈ BΛ, and Q(Q−1(A)) = A.

Furthermore, given any B ∈ BΛ,

B ⊆ Q−1(Q(B)), (2.1)

although we note that in most cases B 6= Q−1(Q(B)) even when n = m (see Figure 2.1
where n = 2 and m = 1 for an illustration).

The final assumption is that an observed probability measure, P obs
D , is given on (D,BD),

which can be described in terms of an observed probability density, πobs
D . The stochastic

inverse problem is then defined as determining a probability measure, PΛ, described as a
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Fig. 2.1: Illustration of the mapping Q : Λ → D. Note that Q maps B to a particular
region in D (Q(B)), and while the inverse image of this set, given by Q−1(Q(B)), contains
B, other points in Λ may also map to Q(B).

probability density, πΛ, such that, the push-forward measure agrees with P obs
D . We use

P
Q(PΛ)
D to denote the push-forward of PΛ through Q(λ), i.e.,

P
Q(PΛ)
D (A) = PΛ(Q−1(A)).

for all A ∈ BD. Using this notation, a solution to the stochastic inverse problem is defined
formally as follows:

Definition 2.1 (Consistency). Given a probability measure P obs
D described as a density

πobs
D with respect to µD on (D,BD), the stochastic inverse problem seeks a probability measure
PΛ described as a probability density πΛ with respect to µΛ, on (Λ,BΛ), such that the
subsequent push-forward measure induced by the map, Q(λ), satisfies

PΛ(Q−1(A)) = P
Q(PΛ)
D (A) = P obs

D (A), (2.2)

for any A ∈ BD. We refer to any probability measure PΛ that satisfies Eq. 2.2 as a consis-
tent solution to the stochastic inverse problem.

Clearly, a consistent solution may not be unique, i.e., there may be multiple probability
measures that are consistent in the sense of Definition 2.1. A unique solution may be
obtained by imposing additional constraints or structure on the stochastic inverse problem.
In this paper, such structure is obtained by incorporating prior information to construct a
unique Bayesian solution to the stochastic inverse problem.

2.2. A Bayesian solution to the stochastic inverse problem. Following the
Bayesian philosophy [14], we introduce a finite prior probability measure P prior

Λ described
as a probability density πprior

Λ on Λ with respect to µΛ. The prior probability measure
encapsulates the existing knowledge about the uncertain parameters.

Assuming that Q is at least measurable, then the prior probability measure on Λ,
P prior

Λ , and the map, Q, induce a push-forward measure PQ(prior)
D on D, which is defined for

all A ∈ BD,

P
Q(prior)
D (A) = P prior

Λ (Q−1(A)). (2.3)

We utilize the following expression for the posterior,

P post
Λ (B) :=

P
prior
Λ (B) P obs

D (Q(B))

P
Q(prior)
D (Q(B))

, if P prior
Λ (B) > 0,

0, otherwise,
(2.4)
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which we describe in terms of a probability density given by

πpost
Λ (λ) = πprior

Λ (λ)
πobs
D (Q(λ))

π
Q(prior)
D (Q(λ))

, λ ∈ Λ. (2.5)

We note that if πQ(prior)
D = πobs

D , i.e., if the prior solves the stochastic inverse problem, then
the posterior density will be equal to the prior density.

It was recently shown in [5] that the posterior given by Eq. 2.4 defines a consistent
probability measure using a contour σ-algebra and when interpreted as an iterated integral
of Eq. 2.5 defines a probability measure on (Λ,BΛ) that is consistent in the sense of Defi-
nition 2.1, i.e., the push-forward of the posterior matches the observed probability measure
almost surely. Approximating the posterior density using the consistent Bayesian approach
only requires an approximation of the push-forward of the prior probability on the model
parameters, which is fundamentally a forward propagation of uncertainty. While numerous
approaches have been developed in recent years to improve the efficiency and accuracy of the
forward propagation of uncertainty using computational models, we only consider the most
basic of methods, namely Monte Carlo sampling, to sample from the prior. We evaluate
the computational model for each of the samples from the prior and use a standard kernel
density estimator to approximate the push-forward of the prior. Given the approximation
of the push-forward of the prior, we can evaluate the posterior at any point λ ∈ Λ if we have
Q(λ). Thus, we can either construct an approximation of the posterior or generate samples
from the posterior using straightforward rejection sampling.

In practice, we prefer to use data that is sensitive to the parameters since otherwise it
is difficult to infer useful information about the uncertain parameters. Specifically, if m ≤ n
and the Jacobian of Q is defined a.e. in Λ and is full rank a.e., then the push forward
volume measure µD is absolutely continuous with respect to the usual Lebesgue measure
[5].

For the rest of this work we maintain the following assumptions needed to produce a
unique consistent solution to the stochastic inverse problem:

(A1) We have a mathematical model and a description of our prior knowledge about
the model input parameters,

(A2) The data exhibits sensitivity to the parameters a.e. in Λ, hence, we use the
Lebesgue measure µ as the volume measure on the data space,

(A3) The observed density is absolutely continuous with respect to the push forward
of the prior, i.e., the model can reach all of the observed data.

In the remainder of this work, we focus on quantifying the value of these posterior
densities. We employ a standard technique, the Kullback-Leibler divergence [15], to measure
the information gained about the parameters from the prior to the posterior. We compute
the expected information gain of a given set of QoI (a given experimental design), and then
determine the OED to deploy in the field.

The consistent Bayesian approach described in this section and the statistical Bayesian
approach typically used to solve stochastic inverse problems are similar in the sense that
both approaches use prior information to determine a posterior probability density on model
inputs given observed data on QoIs. However, the two approaches are fundamentally dif-
ferent in the way the problem is formulated. The statistical Bayesian approach introduces
stochasticity through a likelihood model, often called an error model, and defines the pos-
terior as a conditional probability density. This introduction of the likelihood transforms a
deterministic mapping between parameters and QoI into a stochastic map. Samples from
the posterior can be generated using a Markov Chain Monte Carlo (MCMC) method with-
out directly constructing the posterior. On the other hand, the consistent Bayesian uses
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the push-forward of the prior to define a posterior density on the parameters that satisfies
the consistency requirement. Given the push-forward of the prior, the posterior can be
evaluated directly, which opens up opportunities for methods other than MCMC and even
allows us to explore the effect that varying the observed density has on the posterior which
we exploit for efficient optimal experimental design.

3. The information content of an experiment. We assume we are given a model
and some prior knowledge of the model input parameters. A posterior that is different
from the prior is considered to be informative about the parameters, and posteriors that are
more different from the prior are considered more informative. We quantify this information
gain, as our knowledge of the parameters changes from the prior to a given posterior,
using the Kullback-Leibler divergence [15]. Then, we discuss a simple nonlinear model with
two different QoI that produce very different posteriors. Lastly, we define the expected
information gain for the map Q as the average information gain over a specific space of
possible observed densities.

3.1. Information gain: Kullback-Leibler divergence. Suppose we are given a
description of the uncertainty on the observed data in terms of a probability density πobs

D .
This produces a unique solution to the stochastic inverse problem, πpost

Λ . In [5] it was shown
that πprior

Λ and πpost
Λ are absolutely continuous with respect to the Lebesgue measure µΛ.

From [15] it follows that the Kullback-Leibler divergence (information gain), denoted IQ, is
given by

IQ(πprior
Λ : πpost

Λ ) :=
∫

Λ

πpost
Λ log

(
πpost

Λ

πprior
Λ

)
dµΛ, (3.1)

where we choose the volume measure, µΛ, to be a scaled Lebesgue measure such that
µΛ(Λ) = 1. This choice of µΛ impacts the scaling of πprior

Λ and πpost
Λ which in turn produces

an information gain that is independent of the measure of the parameter space, allowing us
to compare IQ values between applications.

Note that because πprior
Λ is fixed, IQ is simply a function of the posterior

IQ(πprior
Λ : πpost

Λ ) = IQ(πpost
Λ ), (3.2)

and from Eq. 2.5 the posterior is a function of the observed density. Therefore, we write IQ
as a function of the observed density,

IQ(πpost
Λ ) = IQ(πobs

D ). (3.3)

The observation that IQ is a function of only πobs
D allows us to define the expected informa-

tion gain in Section 3.3 based on a specific space of observed densities.

3.2. A simple nonlinear system. Consider the following 2-component nonlinear
system of equations with two parameters introduced in [4]:

λ1x
2
1 + x2

2 = 1
x2

1 − λ2x
2
2 = 1

The first QoI is the second component, i.e., q1(λ) = x2(λ). The parameter ranges are
given by λ1 ∈ [0.79, 0.99] and λ2 ∈ [1 − 4.5

√
0.1, 1 + 4.5

√
0.1] which are chosen as in [4]

to induce an interesting variation in the QoI. We assume the observed density on q1 is a
truncated normal distribution with mean 0.3 and standard deviation of 0.01, see Figure 3.1
(right).
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An analytical solution to this stochastic inverse problem is not available, so we generate
40,000 samples from the uniform prior and use a kernel density estimator (KDE) to construct
an approximation to the resulting push forward density. Then we use Eq. 2.5 to construct an
approximation to the posterior density on a 200×200 uniform grid, see Figure 3.1 (left), and
a simple accept/reject algorithm to generate a set of samples from the posterior (Figure 3.1).
We propagate this set of samples from the posterior through the model and approximate
the resulting push forward of the posterior density using a KDE. In Figure 3.1 (right) we
see the push forward of the posterior agrees quite well with the observed density.

Notice the support of the posterior lies in a relatively small region of the parameter
space. The information gain from this posterior is Iq1(πobs

D ) = 2.015. Next, we consider a
different QoI to use in the inverse problem, and compare the support of its posterior to the
one we just observed.

Fig. 3.1: (left) Approximation of the posterior density obtained using the data q1 which gives
Iq1(πobs

D ) = 2.015, (middle) a set of samples from the posterior, (right) and a comparison of
the observed density on q1 with the push forward densities of the prior and the posterior.

Consider a second QoI,

q2(λ) = x1.

We assume the observed density on q2 is a truncated normal distribution with mean 1.015
and standard deviation of 0.01. We approximate the push forward density and the posterior
using the same 40,000 samples and again generate a set of samples from the posterior
and propagate these samples through the model to approximate the push forward of the
posterior, see Figure 3.2.

Although both q1 and q2 have the same standard deviation in their observed densities,
clearly the two QoI produce very different posterior densities. The posterior corresponding
to data from q2 has a much larger region of support within the parameter space compared to
that of the posterior corresponding to q1. This is quantified with the information gain from
this posterior Iq2(πobs

D ) = 0.466. Given these two maps, q1 and q2, and the specified observed
data on each of these data spaces, the data q1 is more informative of the parameters than
the data q2.

Next, we consider using the data from both q1 and q2, Q : Λ→ (q1, q2), with the same
means and standard deviations as specified above. Again, we approximate the push forward
density and the posterior using the same 40,000 samples (Figure 3.3).

With the information from both q1 and q2 we see a substantial decrease in the support
of the posterior density. Intuitively, the support of the posterior using both q1 and q2 is
the support of the posterior using q1 intersected with the support of the posterior using q2.
This is quantified in the information gain of this posterior IQ(πobs

D ) = 2.98.
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Fig. 3.2: (left) Approximation of the posterior density obtained using q2 which gives
Iq2(πobs

D ) = 0.466, (middle) a set of samples from the posterior, (right) and a compari-
son of the observed density on q2 with the push forward densities of the prior and the
posterior.

Fig. 3.3: (left) The approximation of the push forward of the prior, (middle) the exact
observed density on (q1, q2), (right) the approximation of the posterior density using both
q1 and q2 which gives IQ(πobs

D ) = 2.98.

In the scenario in which we can afford to gather data on both q1 and q2, we benefit greatly
in terms of reducing the uncertainties on the model input parameters. However, suppose we
could only afford to gather one of these QoI in the field. Based on the information gain from
each posterior, q1 is more informative about the parameters than q2. However, consider a
scenario in which the observed data has different means in both q1 and q2. Due to the
nonlinearities of the maps, it is not necessarily true that q1 is still more informative than
q2. If we do not know the mean of the data for either q1 or q2, then we want to determine
which of these QoI we expect to produce the most informative posterior.

3.3. Expected information gain. Our goal is to quantify the expected information
gain of a given experimental design. Physical data is not yet available because we are seeking
to determine the optimal data to collect. Hence, our only resources are the computational
data from the model of the physical system, Q, and the prior knowledge of the parameters,
πprior

Λ . We reiterate, we do not have data available to define πobs
D . Therefore, our goal is

to define the expected information gain based on potential πobs
D . Let O denote the space of

densities over D. We want to define the expected information gain as some kind of average
over this density space in some meaningful way. However, this is far too general of a space
to use to define the expected information gain. This space includes densities that are very
unlikely to be observed in reality. Therefore, we restrict O to be a space more representative
of densities that may be observed in reality.
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With no experimental data available to specify an observed density on a single QoI,
we assume the density is a truncated Gaussian with a standard deviation determined by
some estimate of the measurement instrument error. With Gaussians of (possibly) varying
standard deviations specified for each QoI, this defines the shape of the observed densities
we consider. We let OD denote the space of all densities of this shape centered in D = Q(Λ),

OD =

{
N(q, σ2) : q ∈ D

}
, (3.4)

where N(q, σ2) is a Gaussian function with mean q and standard deviation σ. More details
of this definition of OD are addressed in Section 4. We can easily generalize our description
of O. For example, we could also consider the standard deviation of the observed data to
be uncertain, in which case we would also average over some interval of possible values for
σ. However, in this work we only vary the center of the Gaussian densities.

Remark 1. We can restrict O in other ways as well. For example, if we expect the
uncertainty in each QoI to be described by a uniform density, then we define the restriction
on O accordingly. This choice of shape for the observed density space is largely dependent
on the application. The only limitation is we require the measure specified on the observed
density space reflects the push forward measure on the data space, µD, as described below. In
Section 5.3 we describe one approach for defining a restricted observed density space where
the observed density of each QoI has a Gaussian profile and the standard deviations are
functions of the magnitudes of each QoI.

The restriction of possible πobs
D to this specific space of densities allows us to represent

each density uniquely with a single point q ∈ D. Based on our prior knowledge of the
parameters and the sensitivities of the map Q, the model informs us that some data are
more likely to be observed than other data, this is seen in the plot of πQ(prior)

D in Figure 3.3
(middle). This implies we do not want to average over D with respect to µ or µD, but rather
with respect to the push forward of the prior on D, PQ(prior)

D . This respects the sensitivity
information provided by the model and weights the data appropriately. We define the
expected information gain, denoted E(IQ), as just described,

E(IQ) :=
∫
D
IQ(q)πQ(prior)

D (q)dµ =
∫
D
IQ(q)dPQ(prior)

D . (3.5)

From Eq. 3.1, IQ itself is defined in terms of an integral. The expanded form for E(IQ) is
then an iterated integral,

E(IQ) =
∫
D

∫
Λ

πpost
Λ (λ; q) log

(
πpost

Λ (λ; q)

πprior
Λ (λ)

)
dµΛdP

Q(prior)
D , (3.6)

where we make explicit that πpost
Λ is a function of the observed density and, by our restriction

of the space of observed densities in Eq. 3.4, therefore a function of q ∈ D. We utilize Monte
Carlo sampling to approximate the integral in Eq. 3.5 as described in Algorithm 3.1.

Remark 2. Algorithm 3.1 appears to be a computationally-expensive procedure since it
requires solving M stochastic inverse problems and, as noted in [5], approximating πQ(prior)

D
can be expensive. However, we note that we only need to compute this approximation once,
as each IQ in Step 4 of Algorithm 3.1 is computed using the same prior and map Q and,
therefore, the same πQ(prior)

D . In other words, the fact that the consistent Bayes method only
requires approximating the push-forward of the prior implies that this information can be
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Algorithm 3.1 Approximating the Expected Information Gain of an Experiment
1. Given a set of samples from the prior density: λ(i), i = 1, . . . , N ;
2. Given a set of samples from the push forward density: q(j), j = 1, . . . ,M ;
3. Given the values of the posterior densities πpost

Λ (λ; q(j)) at : λ(i), i = 1, . . . , N ;
4. For j = 1, . . . ,M approximate IQ(q(j)):

IQ(q(j)) ≈ 1
N

N∑
i=1

πpost
Λ (λ(i); q(j)) log

(
πpost

Λ (λ(i); q(j))

πprior
Λ (λ(i))

)

5. Approximate E(IQ):

E(IQ) ≈ 1
M

M∑
j=1

IQ(q(j))

used to approximate posteriors for different observed densities without requiring additional
model evaluations. This significantly improves the computational efficiency of the consistent
Bayesian approach in the context of OED.

3.4. Defining the OED. With these conceptual and computational details regarding
data that extends beyond the range of the model addressed, we define the OED of a physics
based model given prior information on the parameters, a space of potential experimental
designs, and a generic description of the uncertainties for each QoI.

Definition 3.1 (OED). Let Q represent the design space, i.e., the space of all possible
experimental designs, and Qz ∈ Q be a specific design. Then the OED is the Qz ∈ Q that
maximizes the expected information gain,

Qopt := arg max
Qz∈Q

E(IQz ). (3.7)

In general the design space Q can either continuous or discrete. Our focus in this paper
is on the utilization of the consistent Bayesian methodology within the OED framework,
so we do not explore different approaches for solving the optimization problem given by
Definition 3.1 and simply find the optimal design over a discrete set of candidate designs.

Consistent Bayesian inference is well suited to finding OED in continuous design spaces.
Typically OED based upon statistical Bayesian methods uses Markov Chain Monte Carlo
(MCMC) methods to characterize the posterior distribution. MCMC methods do not pro-
vide a functional form for the posterior but rather only provide samples from the posterior.
Consequently gradient-free or stochastic gradient-based optimization methods must be used
to find the optimal design. In contrast consistent Bayesian inference provides a functional
form for the posterior which allows the use of more efficient gradient based optimizers. Ex-
ploring the use of more efficient continuous optimization procedures will be the subject of
future work.

4. Infeasible data. The OED procedure proposed in this manuscript is based upon
consistent Bayesian inference, which requires that the push-forward measure induced by the
prior and the model dominates the observed measure, i.e., any event that we observe with
non-zero probability will be predicted using the model and prior with non-zero probability
(assumption A3). During the process of computing E(IQ), it is possible that we will violate
this assumption. Specifically depending on the mean and variance of the observational
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density, we can encounter πobs
D ∈ OD such that

∫
D π

obs
D dµ < 1, i.e., support of πobs

D extends
beyond the range of the map Q, see Figure 4.2 (middle). In this section we discuss the
causes of infeasible data and options for avoiding infeasible data when estimating an optimal
experimental design.

4.1. Infeasible data and consistent Bayesian inference. When inferring model
parameters using consistent Bayesian inference the major cause for infeasible data is that
the model being used to estimate the OED is inadequate. That is the deviation between
the computational model and reality is large enough to prohibit the model from predicting
all of the observational data. The deviation between the model prediction and the observa-
tional data is often referred to as model structure error and can often be a major source of
uncertainty. This is an issue of most if not all inverse parameter estimation problems [10].
Recently there has been a number of attempts to quantify this error [12], however such
approaches are beyond the scope of this paper. In the following we will assume that the
model structure error does not prevent the model from predicting all the observational data.

4.2. Infeasible data and optimal experimental design. To estimate an approxi-
mate OED we must quantify the expected information gain of a given experimental design
(see Section 3.3). The expectation is over all possible normal observation densities with mean
q ∈ D and variance σ, defined by the set (3.4). When the support of D is bounded these
densities may produce infeasible data. The effect of this violation increases as q approaches
the boundary of D.

To remedy this violation of (A3) we must modify the set of observational densities. In
this paper we choose to normalize πobs

D over D. We redefine the observed density space OD
so that (A3) holds for each density in the space,

OD =

{
N(q, σ2)
Cq

: q ∈ D

}
, (4.1)

where N(q, σ2) is a Gaussian function with mean q and standard deviation σ, and Cq is the
integral of N(q, σ2) over D with respect to the Lebesgue measure on D,

Cq =
∫
D
N(q, σ2)dµ. (4.2)

4.3. A nonlinear model with infeasible data. Consider the nonlinear model intro-
duced in Section 3.2. Suppose the observed density on q1 is a truncated normal distribution
with mean 0.3 and standard deviation of 0.04. In this one-dimensional data space, this ob-
served density is absolutely continuous with respect to the push forward of the prior on q1,
see Figure 4.1 (left). Next, suppose the observed density on q2 is a truncated normal distri-
bution with mean 0.982 and standard deviation of 0.01. Again, in this new one-dimensional
data space, this observed density is absolutely continuous with respect to the push forward
of the prior on q2, see Figure 4.1 (right). Both of these observed densities are dominated
by their corresponding push forward densities, i.e., the model can reach all of the observed
data in each case.

However, consider the data space defined by both q1 and q2 and the corresponding push
forward and observed densities on this space, see Figure 4.2. Clearly, this combined observed
density is not absolutely continuous with respect to the push forward density on (q1, q2),
i.e., the support of πobs

D extends beyond the support of πQ(prior)
D . Referring to Eq. 4.1 , we

normalize this observed density over D, see Figure 4.2 (right). Now that the new observed
density obeys the assumptions needed, we could solve the stochastic inverse problem as
described in Section 2.
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Fig. 4.1: (left) The push forward and observed densities on q1, (right) and the push forward
and observed densities on q2. Notice the support of both of the observed densities is con-
tained within the range of the model, i.e., the observed densities are absolutely continuous
with respect to their corresponding push forward densities.

Fig. 4.2: (left) The push forward of the prior for the map Q : Λ → (q1, q2) introduced in
Section 3.2, (middle) the shaded area is the range of Q, we see the support of the observed
density extends beyond the range of the map, (right) the normalized observed density that
does not extend beyond the range of the map.

4.4. Computational considerations. Next, we address the computational issue of
normalizing g(q, σ), i.e., πobs

D , over D. From the plot of πQ(prior)
D in Figure 4.2 (left) it is

clear the data space may be a complex region. Normalizing πobs
D , as in Figure 4.2 (right),

over D would be computationally expensive. Fortunately, the consistent Bayesian approach
provides a means to avoid this expense. Note that from Eq. 2.4 we have,

P post
Λ (Λ) = P prior

Λ (Λ)
P obs
D (Q(Λ))

P
Q(prior)
D (Q(Λ))

, (4.3)

where P prior
Λ (Λ) = P

Q(prior)
D (Q(Λ)) = 1 which implies,

P post
Λ (Λ) = P obs

D (Q(Λ)). (4.4)

Therefore, normalizing πobs
D over D is equivalent to solving the inverse problem and then

normalizing π̃post
Λ (where we use the tilde over π to indicate this function does not integrate
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to 1 because we have violated (A3)) over Λ. Although Λ may not always be a generalized
rectangle, (A1) implies we have a clear definition of Λ and therefore can efficiently integrate
π̃post

Λ over Λ and then normalize π̃post
Λ by

πpost
Λ =

π̃post
Λ∫

Λ
π̃post

Λ dµΛ

. (4.5)

5. Numerical examples. In this section we consider several models of physical sys-
tems. The first example, a linear model, is a bit abstract. We assume we have some model of
a physical system where the QoI are linear functions of the parameters. Second, we consider
a more concrete example, a stationary convection-diffusion model with a single uncertain
parameter and QoI that are not necessarily linear with respect to the parameters. Third we
consider a contaminant transport model with a two-dimensional parameter space and QoI

In each example, we have a parameter space Λ, a set of possible QoI, and a specified
number of QoI we can afford to gather during the experiment. This in turn defines a design
space Q and we let Qz ∈ Q represent a single experimental design and Dz = Qz(Λ) the
corresponding data space. For each experimental design, we let σz represent the standard
deviations defined by the uncertainties in each QoI that compose Qz, ODz represent the
observed density space, πobs

Dz ∈ ODz represent an arbitrary observed density, and πpost,z
Λ

represent the corresponding posterior density.
The first example has a discrete design space, and therefore we simply select the OED.

The second and third examples have continuous design spaces, so we approximate the OED
by selecting the OED from a large set of candidate designs. This approach was chosen
because it is much more efficient to perform the forward propagation of uncertainty using
random sampling only once and to compute all of the candidate measurements for each of
these random samples. Alternatively, one could pursue a continuous optimization formu-
lation, which would require a full forward propagation of uncertainty for each new design,
but this was beyond the focus of this paper.

5.1. A linear map. Consider the following set of linear maps,

q1(λ) = 0.5λ1 + 0.5λ2

q2(λ) = 2.5λ1 + 0.5λ2

q3(λ) = −0.2λ1 + 0.3λ2,

where we choose λ ∈ Λ = [0, 1]2. Each of these QoI represents some kind of measurement
of a physical system and Λ represents two uncertain model input parameters. Suppose we
can only afford to gather two of the three proposed QoI. This defines our design space Q to
be a discrete space with three possible maps Q = {Qa, Qb, Qc}, where

Qa = (q1, q2)
Qb = (q1, q3)
Qc = (q2, q3).

Our goal is to choose the optimal map (OED) from Q. To make this decision, we must
specify the measurement uncertainties on each component. We let each of the measurement
uncertainties be truncated normal distributions with standard deviation of 0.1. Therefore,
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Design E(IQ(z))

Qa 2.231

Qc 2.126

Qb 1.017

Table 5.1: The expected information gain for each of the three experimental designs.

the observed density spaces are defined as follows,

ODa =

{
N(q, (σa)2)

Cq
: q ∈ Da

}

ODb =

{
N(q, (σb)2)

Cq
: q ∈ Db

}

ODc =

{
N(q, (σc)2)

Cq
: q ∈ Dc

}
,

where σa = σb = σc = (0.1, 0.1). We choose a uniform prior and note that, because each
component is linear, we can compute the push forwards of the prior exactly by,

π
Q(a)(prior)

D(a) (q) =
1

µ(Da)
for all q ∈ Da

π
Q(b)(prior)

D(b) (q) =
1

µ(Db)
for all q ∈ Db

π
Q(c)(prior)

D(c) (q) =
1

µ(Dc)
for all q ∈ Dc.

We generate 40,000 samples from the uniform prior, and for each Qz ∈ Q, this set
of samples is used to approximate both IQz and subsequently E(IQz ) in Algorithm 3.1.
To visualize the process outlined in Algorithm 3.1 we focus on the experimental design
Qa = (q1, q2). Figure 5.1 (top) shows four of the 40,000 πobs

D(a) ∈ ODa used to approximate
E(IQa) and their corresponding posterior densities πpost,(a)

Λ (bottom). The information gain
varies for each potential πobs

D(a) and the expected information gain is the average over all of
the computed information gains.

In Figure 5.2 we choose πobs
Dz to be centered at Qz([0.5, 0.5]) so we can observe the

posteriors of the different experimental designs with limited boundary effects. In Table 5.1
we show the results of the approximated expected information gain for the three possible
experimental designs. Design Qa produces the maximum expected information gain and,
therefore, is the OED.

5.2. Stationary convection-diffusion: uncertain source amplitude.

5.2.1. Problem setup. In this section we consider a stationary convection diffusion
model on a square domain:

−D∇2u+∇ · (vu) = S, x ∈ Ω,
∇u · n = 0, x ∈ ΓN ⊂ ∂Ω,
u = 0, x ∈ ΓD ⊂ ∂Ω,

(5.1)
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Fig. 5.1: A series of potential πobs
D(a) (top) and their corresponding πpost,(a)

Λ (bottom). Infor-
mation gain (from left to right) : 2.163, 2.658, 2.607, 1.929. For this map E(IQa) = 2.231.

Fig. 5.2: (bottom) Posterior densities centered in Λ for each of the experimental designs
(from left to right) Qa, Qb, Qc. Corresponding information gain (from left to right) : 1.939,
0.565, 1.876. (top) The corresponding observed densities.

with

S(x) = A exp
(
− ||xsrc − x||

2

2h2

)
where Ω = [0, 1]2, u is the concentration field, the diffusion coefficient D = 0.01, the con-
vection vector v = [1, 1], and S is a Gaussian source with the following parameters: xsrc
is the location, A is the amplitude, h is the width. We impose homogeneous Neumann
boundary conditions on ΓN (right and top boundaries) and homogeneous Dirichlet condi-
tions on ΓD (left and bottom boundaries). For this problem, we choose xsrc = [0.5, 0.5], and
h = 0.05. We let A be uncertain within [50, 150], thus the parameter space for this problem
is Λ = [50, 150]. Hence, our goal is to gather some limited amount of data that provides the
best information about the amplitude of the source, i.e., reduces our uncertainty in A.

To approximate solutions to the PDE in Eq. 5.1 given a source amplitude A, we use a
finite element discretization with continuous piecewise bilinear basis functions defined on a
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Design location E(IQ(z))

(0.56, 0.57) 0.9381

(0.56, 0.55) 0.9374

(0.58, 0.57) 0.9341

(0.55, 0.57) 0.9340

(0.59, 0.60) 0.9338

(0.59, 0.57) 0.9337

Fig. 5.3: (left) The expected information gain over the design space (which is Ω in this
example). Notice the higher values in the center of the domain and towards the top right
(in the direction of the convection vector from the location of the source), this is consistent
with our intuition. (right) The expected information gain for each of the top 6 experimental
designs.

uniform (25× 25) spatial grid.

5.2.2. Results. We assume that we have limited resources for gathering experimental
data; specifically, we can only afford to place one sensor in the domain to gather a single
concentration measurement. Our goal is to place this single sensor in Ω to maximize the
expected information gained about the amplitude of the source. We discretize Ω using 2,000
uniform random points which produces a design space with 2,000 possible experimental
designs. For this problem, we let the uncertainty in each QoI be described by a truncated
Gaussian profile with a fixed standard deviation of 0.1. This produces observed density
spaces, ODz , as described in Eq. 4.1.

We generate 5,000 uniform samples from the prior and simulate measurements of each
QoI for each of these 5,000 samples. For each experimental design, we calculate E(IQz ) using
Algorithm 3.1 and plot E(IQz ) as a function of the discretized design space in Figure 5.3
(left). Notice the expected information gain is greatest near the center of the domain (near
the location of the source) and in the direction of the convection vector away from the
source. This result matches intuition, as we expect data gathered in regions of the domain
that exhibit sensitivity to the parameters to produce high expected information gains. In
Figure 5.4 (right) we show the top 6 experimental designs and corresponding E(IQz ).

5.3. Time-dependent diffusion: uncertain source location. In this section, we
compare results from a statistical Bayesian formulation of OED to the formulation described
in this paper. Specifically, we consider the model in [8] where the author uses a Bayesian
framework for OED to determine the optimal placement of a single sensor that maximizes
the expected information about the location of a contaminant source.
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5.3.1. Problem setup. We consider a contaminant transport model on a square do-
main: 

∂u
∂t = ∇2u+ S, x ∈ Ω, t > 0,
∇u · n = 0, x ∈ ∂Ω, t > 0,
u = 0, x ∈ Ω, t = 0.

(5.2)

with

S(x) =

{
s

2πh2 exp
(
− ||xsrc−x||

2

2h2

)
, if 0 ≤ t < τ,

0, if t ≥ τ,

where Ω = [0, 1]2, u is the space-time concentration field, we impose homogeneous Neumann
boundary conditions along with a zero initial condition, and S is a Gaussian source with
the following parameters: xsrc is the location, s is the intensity, h is the width, and τ is
the shutoff time. For this problem, we choose s = 2.0, h = 0.05, and τ = 0.3. We let
xsrc be uncertain within [0, 1]2, thus the parameter space for this problem is Λ = [0, 1]2.
Hence, our goal is to gather some limited amount of data that provides the best information
about the location of the source, i.e., reduces our uncertainty in xsrc. To approximate
solutions to the PDE in Eq. 5.2 given a location of S, i.e., a given xsrc, we we use a
finite element discretization with continuous piecewise bilinear basis functions defined on a
uniform (25×25) spatial grid and backward Euler time integration with a set size ∆t = 0.004
(100 time steps).

5.3.2. Results. We assume that we have limited resources for gathering experimental
data; specifically, we can only afford to place one sensor in the domain and can only gather
a single concentration measurement at time t = 0.24. Our goal is to place this single sensor
in Ω to maximize the expected information gained about the location of the contaminant
source. For simplicity, we discretize Ω using an 11×11 regular grid of points which produces
a design space with 121 possible experimental designs, i.e., |Q| = 121. We let the uncertainty
in each QoI be described by a Gaussian profile with a standard deviation that is a function
of the magnitude of the QoI, i.e.,

σi = 0.1 + 0.1|qi| for i = 1 . . .M, (5.3)

where M is the dimension of the data space. This produces observed density spaces, ODz ,
that consist of truncated Gaussian functions with varying standard deviations,

ODz =

{
N(q, (σ(q))2)

Cq
: q ∈ Dz

}
. (5.4)

We generate 5,000 uniform samples from the prior and simulate measurements of each
QoI for each of these 5,000 samples. For each experimental design, we use this data to
calculate E(IQz ) using Algorithm 3.1 and plot E(IQz ) as a function of the discretized design
space in Figure 5.4 (left). Notice the expected information gain is greatest near the corners of
the domain and smallest near the center, this is consistent with [8]. In Figure 5.4 (right) we
show the top 6 experimental designs and corresponding E(IQz ). In Figure 5.5 we consider
three different posteriors computed using data from the OED, i.e., data gathered by a
sensor placed in the bottom left corner of the domain, where each posterior corresponds to
a different possible location of the source. We see varying levels of information gain in these
three scenarios, reiterating the point that we choose the OED based on the average of these
information gains, E(IQ).
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Design location E(IQ(z))

(0.0, 0.0) 0.7412

(1.0, 1.0) 0.7398

(0.0, 0.1) 0.7357

(0.1, 0.0) 0.7349

(1.0, 0.9) 0.7348

(0.0, 1.0) 0.7341

Fig. 5.4: (left) The expected information gain over the design space (which is Ω in this
example). Notice the higher values in the corners and the general trend are consistent with
[8]. (right) The expected information gain for each of the top 6 experimental designs.

Fig. 5.5: Posteriors using the OED for three realizations of the location of the source. Notice
the information gain changes substantially for each posterior, however, this experimental
design produces the maximum average information gain, E(IQ), over all possible locations
of the source.

Remark 3. Although many of the results in this section seem to match our intuition
about which measurement locations should produce high expected information gains, results
from this method are not always consistent with intuition. In particular, we have found that
our results can depend on our choice of the variance in the the observed densities σ. If σ is
chosen to be large relative to the range of a data space, then the posteriors produced as we
average over OD are all nearly the same and potentially produce unusually high information
gains when the observed densities having substantial support over regions of the data space
with very small probability (very small values of the push-forward of the prior). Another way
to think of this is the push-forward densities have high entropy and because σ is large πobs

D
is very close to uniform and this produces posterior densities with high information gains.
If σ is chosen to be small relative to the range of the data space, we do not encounter this
issue because we are integrating over D with respect to the push-forward measure so most of
our potential observed data lies in high probability regions of the data space.
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6. Conclusions. In this manuscript, we developed an OED formulation based on the
recently-developed consistent Bayesian approach for solving stochastic inverse problems.
We discussed a characterization of the space of observed densities and a computationally-
efficient approach for rescaling observed densities to satisfy the requirements of the consistent
Bayesian approach. We also gave several intuitive numerical examples to demonstrate the
OED procedure.
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Applications

Articles in this section discuss the application of computational techniques to simulate phys-
ical systems.

Barone and Perego use Albany to implement a unified enthalpy formulation for poly-
thermal glaciers, which is an improvement over standard cold-ice models, and apply this
model to predict temperature and porosity distributions of the Greenland ice sheet.

Castillo, Mitchell, and Bond apply data analytics methods to simulated microstructures
of weld joints generated by the kinetic Monte Carlo code SPPARKS. Using two-point spatial
cluster statistics, chord length distributions, windowing strategies, and Principle Compo-
nent Analysis, they begin to quantify complex microstructures and significantly reduce the
dimensions of the resulting data. The methods are described and demonstrated on a set of
weld microstructures for which one process parameter, the weld speed, is varied. Performing
analyses and dimensional reduction techniques presented here are an important first steps
toward the ultimate goal of discovering material process-structure relationships.

Decolvenaere and Mattsson develop a test suite designed to be used in validation studies
for codes that implement density functional theory. They focus on experimental data from
transition metal elements and binaries, and specific binaries are selected with the goal of
including a wide variety of physics, which may be captured with varying degrees of fidelity
by different functionals, while keeping the number of computations to a minimum. They
apply the suite to eight commonly-used functionals and demonstrate that no one functional
captures all the physics present in transition metal elements and binaries.

Fisher and Robinson give an exact analytic solution to a forced Burger’s equation using
the method of characteristics. They numerically compute quantities of interest that are
integrals over two-dimensional domains of space-time, including domains crossing the shock
and different characteristic regions. These results are compared with numerical results from
Drekar.

Hong and Perego use finite element based simulations to assess two phenomenological
models for ion crowding, which are improvements on the Poisson Boltzmann model. Ion size
effects are evaluated by comparing simulation results to results based on classical density
functional theory, and the models are then applied to the problem of colloid mobility in a
microchannel.

Kalmbach and Chance investigate a possible mechanism for phase precession in hip-
pocampal place cells and whether an animal’s age has an impact on place cell firing. They
analyze rat electrophysiology data from a previously-published study using data clustering,
curve fitting, and phase range analysis to find evidence that place cell firing in the CA1
region of the hippocampus is driven by two distinct components.

Keller, Silling, and Du perform molecular dynamics simulations that are in a time-
dependent peridynamic framework that includes a thermal source term and allows coarse
graining by constraining the average displacements of groups of atoms. They determine
the conditions on thermal forcing magnitude, constraints, number of atoms per bin, and δ-
horizons for which the method is stable and converges to the correct solution, and perform
numerical experiments to demonstrate the behavior of the method in different regimes.

Meredith, Siefert, and Kramer propose a method to compute the effective electrical
conductivity tensor of a computational cell containing multiple materials, given the planar
interfaces separating the different material regions. They demonstrate that this method is
superior to volume averaging in the case where the electric field is tangent to all the material
interfaces. They also propose a method for computing the element-centered current density
from the edge-centered electric field using Ohm’s law, rather than from the face-centered
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magnetic field using Ampere’s law. They demonstrate that the Ohm’s law method results
in second-order convergence, which is an improvement over the first-order convergence for
achieved by the Ampere’s law method.

Pasetto and Littlewood implement the semi-Lagrangian reproducing kernel particle method
(RKPM) in Sierra / Solid Mechanics. As with Lagrangian RKPM, this meshfree method
avoids the problems of mesh distortion and inversion often encountered with finite element
approaches. Semi-Lagrangian RKPM goes further by rebuilding kernels, shape functions,
and nodal neighbor lists at every time step. This approach is ideal for challenging compu-
tational mechanics problems involving large deformations, material damage, fracture, and
material fragmentation. They describe their implementation, and present a simulation of a
wave propagation in a bar as verification problem.

Thompson, Matzen, and Armenta test the effectiveness of pupillometry at measuring
cognitive load by comparing eye tracker and electroencephalography measurements taken
while subjects performed visual and cognitive tasks of varying difficulties.

Wang, Quach, and Rothganger propose an approach for file fragment classification based
on sparse coding and recurrent neural networks with long short-term memory that does not
require the use of hand-engineered features. They demonstrate this approach by classifying
byte patches from common file types and in most cases achieve a prediction accuracy that
is better than for existing methods.

J.B. Carleton
M.L. Parks

December 15, 2016
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IMPLEMENTATION OF ENTHALPY MODEL FOR
POLYTHERMAL GLACIERS

ALESSANDRO BARONE∗ AND MAURO PEREGO†

Abstract. Polythermal glaciers contain both cold ice and temperate ice where liquid water is present.
Standard thermodynamic cold-ice models approximate the energy balance by a differential equation for
the temperature variable. However, such models do not account for the portion of latent heat of liquid
water within temperate ice, so they are not energy-conserving when temperate ice is present. We develop
a computational model to describe temperature and liquid water fraction of glaciers, based on work by
Schoff and Hewitt, 2016. They can be determined from the enthalpy of the ice sheets, so a unified enthalpy
formulation will be described. The model accounts for the possibility of gravity-driven drainage allowing to
predict more physical water content. The scheme is implemented in Albany and numerical results for the
Greenland ice sheet are presented.

1. Introduction. In this work, we will focus on the computational modeling of tem-
perature and liquid water content in polythermal glaciers. They contain both cold ice, below
its pressure melting temperature, and temperate ice, which is made of a solid/liquid mix-
ture at the melting temperature. Temperate regions are present mainly near the bed, where
dissipation caused by viscous creep acting as a heat source allows regions of temperate ice
to form.

Polythermal conditions are present in a huge variety of glaciers. For instance, the
Greenland and Antarctic ice sheets feature cold ice in the bulk and a temperate layer near the
bed. Models able to take into account such thermal structures are an important component
of ice-sheet simulations because the rheology of ice depends strongly on temperature and
water content. This motivates the development of thermomechanically coupled problem.

Thermodynamic models of ice flow have already been presented in literature [6]. Such
models are called cold-ice models since they do not take into account the fully energy content
of temperate ice, so they are not energy-conserving.

Some polythermal methods present in the literature split the ice domain into disjoint
cold and temperate regions and model the temperature and the water content separately,
applying Stefan matching conditions at the cold-temperate interface [4]. Since the imple-
mentation of such models is troublesome, we introduce a thermodynamic model using a
unified enthalpy formulation able to take into account the presence of temperate ice. We
will follow the approach proposed in [11].

The key ingredient of this theory is a constitutive law for water transport in the tem-
perate ice. This mechanism might be modeled either by Darcy’s law or by a diffusive flux.
We will adopt the strategy that uses the diffusive flux. Moreover, in these regions, due to
ice-water density difference, meltwater may also flow through the solid ice. We will model
this mechanism by adding a gravity-driven drainage term. This will allow us to obtain more
reliable results since disregarding the drainage mechanism leads to unreasonable levels of
liquid water fraction.

The current report is organized as follows. In Section 2, we lay out the Stokes model
and its first-order approximation for ice velocity. Then, we introduce the enthalpy model
equations including boundary conditions. In Section 3, we describe the numerical implemen-
tation of the method in Albany/FELIX, a parallel, scalable and robust finite-element based
solver for the first-order Stokes momentum balance equations for ice flow [9],[12]. Finally,
in Section 4, we report on the results of the numerical simulations on Greenland ice sheet.

∗Department of Math&CS, Emory University, Atlanta, GA, alessandro.barone@emory.edu
†Sandia National Laboratories, Albuquerque, NM, mperego@sandia.gov
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2. Mathematical model.

2.1. Stokes model. Glacier ice is generally modeled as an incompressible, heat-conducting,
non-Newtonian fluid behaving as a Stokes flow under the action of gravity. The Reynolds
number for typical ice-sheet flows are extremely low and inertial terms can be neglected due
to the slow movement of the ice. The Stokes model is given by{

−∇ · σ = ρg
∇ · u = 0,

(2.1)

where u denotes the ice velocity, σ the Cauchy stress tensor, ρ the ice density, and g the
gravitational acceleration. For the sake of simplicity, we do not consider curved domains,
so g is assumed to be directed as the z axis, namely g = (0, 0,−||g||).

The Cauchy stress tensor can be split into a deviatoric and isotropic part:

σ = τ − pI = 2µε̇− pI, (2.2)

where τ is the deviatoric stress tensor, p the ice pressure, I the identity tensor, µ the ice
effective viscosity and ε̇ the strain-rate tensor defined as

ε̇ =
1
2

(∇u +∇uT ). (2.3)

The nonlinear rheology of ice sheets is commonly expressed by the Glen’s law, relating the
effective viscosity µ and the effective strain rate ε̇e

µ =
1
2
A−

1
n ε̇

( 1−n
n )

e =
1
2
A−1τ1−n

e , (2.4)

where the effective stress τe and ε̇e are given by

ε̇e =
√

1
2

∑
ij

ε̇2ij and τe =
√

1
2

∑
ij

τ2
ij . (2.5)

Moreover, n is the flow rate exponent and A follows an Arrhenius relationship

A = A(T ) =

A0 exp
(
− Q0

RT

)
T < 263.15K

A1 exp
(
− Q1

RT

)
T ≥ 263.15K

, (2.6)

where T is the temperature measured in Kelvin, R the universal gas constant, Q0 and Q1

are activation energies, A0 and A1 material constants.
Stokes boundary conditions. At the ice-atmosphere interface, a stress-free boundary

condition is prescribed, i.e., σ · n = 0, where n denotes the unit vector normal to the ice
sheet boundary and outward-pointing.

At the ice-bedrock interface, we consider either no-slip condition (u = 0) or sliding
boundary conditions, i.e., u · n = 0 and (σ · n + βu)|| = 0, where β is the basal sliding
coefficient and the operator (·)|| denotes the tangential projection onto the basal surface.

2.2. First-order model. Due to the high computational burden associated with the
solution of the Stokes equations over 3D domains, such as Greenland or Antarctica, several
approximate models have been introduced in the literature.

In this work, we consider the FO model, an first-order accurate approximation to the
Stokes model (2.1) relying on the fact that the aspect ratio between the characteristic thick-
ness and the characteristic horizontal extent of an ice sheet is very small. This simplification
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leads to a three-dimensional elliptic problem in the variables u and v, the components of
the velocity along the x and y directions, respectively. The FO model reads{

−∇ · (2µε̇1) = −ρg ∂s∂x
−∇ · (2µε̇2) = −ρg ∂s∂y ,

(2.7)

where s ≡ s(x, y) denotes the upper surface boundary: Γs ≡ {(x, y, z) ∈ R3|z = s(x, y)}
and

ε̇1 =


2ε̇xx + ε̇yy

ε̇xy

ε̇xz

 and ε̇2 =


ε̇yx

ε̇xx + 2ε̇yy

ε̇yz

 . (2.8)

Further details about the derivation of this model and its numerical implementation can be
found in [7],[12].

2.3. Enthalpy model. We assume that the FO model coupled with the conservation
of mass accurately models the temperate ice deformation. This is not strictly true since, in
case of temperate ice, the ice is actually a two-phase mixture of ice and pore water. This
means that the porous ice matrix may be permeable, and the incompressibility assumption
does not hold anymore due to the drainage of water from the ice. So, the expression in (2.1)
should become (see [11] for more details)

∇ · u = −∇ · j− ρw − ρ
ρwρ

m, (2.9)

where j = φ(uw −u) is the relative water flux, φ the porosity (water content), ρw the water
density, and m the internal melting rate (rate of mass conversion from ice to water).

Nevertheless, ignoring the ice-water density difference, the water flux is expected to
be small compared to the ice flux so that the right hand side in (2.9) may be reasonably
ignored.

The conservation of energy is given by

− k∆T + ρcu · ∇T = τij ε̇ij − ρwLm, (2.10)

where k is the ice thermal conductivity, c the ice heat capacity and L the latent heat. As
done for the Stokes model, we focus on the steady version of the equation. The summation
convention is used for repeated indices.

If the temperature T is below the pressure melting point Tm(p), then m is zero. On the
other hand, if the temperature reaches Tm(p), the temperate ice is porous with a non-zero
porosity φ. Moreover, since in temperate ice the temperature is basically constant, (2.10)
can be used to determine the melting rate m, which provides the source term to the moisture
equation

u · ∇φ+∇ · j = m. (2.11)

(2.10) and (2.11) are usually combined into a single equation that holds for both cold
and temperate ice. These equations can be unified by defining the enthalpy as

h = ρc(T − T0) + ρwLφ, (2.12)
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where T0 is a fixed reference temperature (here we take T0 = 265K for not having the
enthalpy negative almost everywhere). Temperature and porosity can be determined as
follows

T =

{
T0 + h/ρc

Tm(p)
φ =

{
0 h < ρc(Tm(p)− T0)
[h− ρc(Tm(p)− T0)]/(ρwL) h ≥ ρc(Tm(p)− T0)

. (2.13)

We point out that h < ρc(Tm(p)−T0) holds in case of cold ice, whereas h ≥ ρc(Tm(p)−T0)
denotes the temperate ice enthalpy.

Therefore, combining the energy and the moisture equation (2.10) and (2.11), we can
easily introduce an enthalpy equation of an ice sheet

u · ∇h+∇ · q = τij ε̇ij , q =

{
−k∇T h < ρc(Tm(p)− T0)
−k∇Tm(p) + ρwLj h ≥ ρc(Tm(p)− T0)

(2.14)

Enthalpy is transported by advection and conduction in the cold ice, and by advection and
water transport in the temperate regions.

However, in order to close the thermal model and compute the temperature and the
porosity, we need to introduce a model for the water flux j. A standard approach relies on
the assumption that the water transport is diffusive, so

j = −ν∇φ, (2.15)

for some coefficient ν.
In this case, (2.14) is simply an advection-diffusion equation with variable diffusivity

depending on the value of the enthalpy h. ν is typically taken to be smaller than k/ρc. This
term may be interpreted as a regularization of the case ν = 0 implying that water is simply
advected with the ice. This choice of ν leads to a hyperbolic equation on the temperate
regions that allows the enthalpy to be discontinuous at the cold-temperate interfaces. We
want to prevent such discontinuities since they may introduce complications in the numerical
methods.

Since this model may result in unreasonable levels of water in the ice, we aim at incor-
porating a term which takes into account the drainage of meltwater from the ice. Indeed,
since liquid water is denser than ice, liquid water may flow through the ice porous matrix.
Therefore, following [11], we add a gravity-driven drainage term in (2.15) yielding

j = −ν∇φ+
k0φ

α(ρw − ρ)g
ηw

, (2.16)

where k0 is a permeability factor and ηw the viscosity of the water.
Enthalpy boundary conditions. Assuming the temperature field at the surface Tsurf to

be known a priori, a Dirichlet boundary condition is imposed at the ice-atmosphere interface

hsurf = ρc(Tsurf − T0). (2.17)

It is reasonable to assume the ice at surface to be cold, so φ = 0.
At the ice-bedrock interface, heat flux q is supplied to the basal surface by the geother-

mal flux G. Moreover, frictional heating arises from sliding of the ice, Fb = β|u|2. In case
of cold ice, the heat flux entering the base of the glacier is merely given by geothermal and
frictional heating

q · n = G · n + Fb. (2.18)
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This leads to a Neumann boundary condition for the enthalpy h in (2.14)

− k

ρc
∇h · n = G · n + Fb. (2.19)

Throughout, we assume that G · n is constant and equal to G.
On the other hand, in case of temperate ice, we need to take into account the fact

that the ice is actually a mixture of solid/liquid water. Therefore, as explained in [3], two
different boundary conditions are imposed depending on the basal water layer thickness ηb.
In case of positive thickness, ice melts due to the heat flux entering from the bedrock. This
process is taken into account by computing the basal melt rate −Mb

−Mb =
Fb +G

ρwL(1− ρw
ρ φ)

, (2.20)

where L is the latent heat of fusion. −Mb is basically the rate at which hydrological storage
delivers liquid water to the base of the glacier. Of course, −Mb = 0 in case of cold ice.

Since the basal melt rate calculation balances the energy flux, we apply a homogeneous
Neumann boundary condition for h in (2.14)

− k

ρc
∇h · n = 0 if ηb > 0. (2.21)

On the other hand, if ηb = 0, this implies that T = Tm(p) and φ = 0. Thus, we apply a
Dirichlet boundary condition for h in (2.14)

h = ρc(Tm(p)− T0) if ηb = 0. (2.22)

In this work, for the sake of ease, we assume the thickness of the basal water layer ηb to
be always positive, implying that we impose a homogeneous Neumann boundary condition
in any temperate region. This is because the Dirichlet boundary condition (2.22) may be
applied on a subset of DOFs that can change at each iteration of the nonlinear solver making
its implementation cumbersome.

However, in a follow up work, we plan to improve the model by including (2.22) in the
computational model.

2.4. Computation of vertical velocity. After computing the ice velocity u = (u, v)
from the FO model, the velocity along the z-direction w follows from mass conservation
with zero vertical velocity at the base

w = w
∣∣
z=b
−
∫ z

b

(
∂u

∂x
+
∂v

∂y

)
dz̃, (2.23)

where b is the bedrock elevation.
The basal melt rate as well as the drainage contribution affects the vertical velocity at

the base. Therefore, w is computed as follows

w = −Mb +
k0φ

α(ρw − ρ)g
ηw

∣∣∣∣
z=b

−
∫ z

b

(
∂u

∂x
+
∂v

∂y

)
dz̃. (2.24)
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2.5. Hydrostatic approximation. We use the hydrostatic pressure approximation

p(z) = ρg(h− z) + patm, (2.25)

where h is the surface elevation and patm is the atmospheric pressure. By recall the Clausius-
Clapeyron relation

∂Tm(p)
∂p

= −υ, (2.26)

where υ is constant, the pressure melting temperature is given by

Tm(p) = 273.15K − υp. (2.27)

3. Implementation. The enthalpy formulation presented in the previous section has
been implemented in Albany/FELIX, an unstructured grid, parallel, scalable and robust
finite element solver for the first-order Stokes equation. The code is written in C++ and
implemented in Albany (see [9],[12]), an open-source multiphysics analysis package based
on the Trilinos multiphysics framework (http://trilinos.sandia.gov).

The PDEs defined in (2.7) and (2.14) and the associated boundary conditions are dis-
cretized using the classical Galerkin finite element method FEM. In particular, we resort
to a P1 finite element discretization (see [7] for more details on the weak formulation of
the first-order equations). The PDE equations are described by a set of evaluation kernels,
whose evaluation is managed by the Phalanx package. Then, all that is required in Albany
is to code the residual of the PDE equations.

Once the system of nonlinear algebraic equations for the ice velocities and the enthalpy
is created following discretization by the FEM, the Trilinos package NOX is used to solve it
with Newton’s method. The Sacado package of Trilinos is in turn used to compute an ana-
lytic Jacobian matrix at each iteration of Newton’s method with automatic differentiation.
When the convergence of Newton’s method is not monotonic, the solver uses a backtrack
algorithm which halves the Newton increment until monotonicity is restored. The tolerance
tol = 1 × 10−2 is used. The inner linear Jacobian system is solved by Belos with block
GMRES (tol = 1×10−3) and ILU additive Schwartz preconditioner (available in IFPACK).

As pointed out in the previous section, the diffusivity parameter in (2.14) depends on
the energy content of the glacier. In literature, it is reasonable to take the diffusivity ν of
temperate ice 100 times smaller than the diffusivity of cold ice k/ρc. Therefore, especially at
the cold-temperate interface, the discontinuity on the value of the diffusivity may undermine
the convergence of the nonlinear solver. By running some preliminary simulations, we have
noticed that the nonlinear solver does not converge. To overcome this issue, a smooth
function is used to smooth out the discontinuity leading us to solve (2.14) with an unique
diffusivity value ν̃ defined by

ν̃ = −k/ρc− ν
π

(
α̃ arctan(h− hm)

)
+
k/ρc− ν

2
, (3.1)

where α̃ is a tuning parameter on the smoothness of the function and hm = ρc(Tm(p)− T0)
the pressure melting enthalpy. The colder the ice, e.g., h << hm, the closer ν̃ is to k/ρc,
whereas, if h >> hm (temperate ice), ν̃ tends to ν. We might use some fixed value for the
tuning parameter α̃, e.g., α̃ = 100, but even this choice does not improve the performances
of the nonlinear solver.

Therefore, the strategy proposed is to treat α̃ as a continuation parameter in the so
called homotopy method (Algorithm 1, see [2] for more details). This approach aims at
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Fig. 3.1: Approximation of diffusivity discontinuity for α̃ = 100

Algorithm 1: Homotopy continuation on tuning parameter α̃ in ν̃

set γ = 0.1, h0 = h0 and i = 0

while γ ≤ 1 or i == max # iter do

Set α̃ = 10(−2+20γ)/9 and define ν̃ by (3.1)

Set i = i+ 1

Solve (2.14) with initial guess hi−1 using Newton’s method to obtain hi

Increase γ using a homotopy natural continuation method

end while

solving a sequence of problems corresponding to a sequence of tuning parameters α̃i with
0 < α̃i < α̃i+1, until α̃ is sufficiently close to 100. We focus on a natural continuation
procedure, where the final solution at one value of the continuation parameter is used as
the initial guess for the subsequent nonlinear problem. The continuation algorithm re-
lies on a homotopy parameter γ used to generate the sequence {α̃i}, i = 1, 2, . . . , where
α̃i = 10(−2+20γ)/9. Starting with γ = 0.1 (corresponding to α̃0 = 1), the nonlinear solver
converges from a trivial initial guess. The continuation algorithm will determine the next
value of γ using an adaptive step size control, and will backtrack and attempt a smaller
parameter step if the nonlinear solve at some step fails to converge (for more details, see
[2] and [10]). The procedure stops either when γ = 1 or a maximum number of steps is
reached. Increasing the value of α̃, the nonlinear solver fails to converge, therefore we set
α̃ = 100. The correspondent approximation of the discontinuity is shown in Fig. 3.1. The
homotopy continuation algorithm is implemented in the LOCA package [10].

Another issue we need to face is related to the discontinuity in the boundary condi-
tions (2.19) and (2.21) at the basal surface for the enthalpy model. We impose either a
homogeneous or nonhomogeneous Neumann boundary condition depending on the thermal
state of the ice. Performing numerical simulations, we have noticed that this makes the
nonlinear solver struggle to converge. Therefore, we smooth out the discontinuity using the
same strategy explained above and (2.19) and (2.21) are replaced by an unique Neumann
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υ 7.9 × 10−8 K Pa−1 n 3

ρ 916 kg m−3 A0 1.3 × 107 Pa−3 yr−1

ρw 1000 kg m−3 A1 6.26 × 1022 Pa−3 yr−1

k 2.1 W m−1 K−1 Q0 6 × 104 J mol−1

c 2009 J kg−1 K−1 Q1 1.39 × 105 J mol−1

L 3.34 × 105 J kg−1 R 8.314 J mol−1 K−1

ν 1.1 × 10−8 m2 s−1 α 2

g 9.8 m2 s−1 k0 10−12 m2

patm 1.01 × 106 Pa ηw 1.8 × 10−3 Pa s

G 0.05 W m−2

Table 3.1: Values of parameter used for numerical simulations.

boundary condition

− k

ρc
∇h · n = a(G · n + Fb),

a = − 1
π

(
α̃ arctan(h− hm)

)
+

1
2
,

(3.2)

where a is tuned by Algorithm 1.
As pointed out in [12], Glen’s law effective viscosity (2.4) is not defined when u is a rigid

movement or exactly 0. This may lead to poor convergence of the nonlinear solver since the
initial guess for u is often taken as uniform or 0. A regularization parameter δ > 0, δ << 1
is added to the sum of the strain rates in the effective strain rate term in (2.4), leading to

µδ =
1
2
A−

1
n (ε̇2e + δ)( 1−n

2n ), where lim
δ→0

µδ = µ. (3.3)

However, even using some small, fixed value for δ, e.g., δ = 10−10, Newton’s method either
converges very slowly or fails to converge. This issue is tackled using the same homotopy
continuation procedure showed in Algorithm 1. The only difference is that α̃ is replaced by
δ and, instead of α̃ = 10(−2+20γ)/9, we impose δ = 10−10γ (see [12] for more details).

We test the model and the numerical discretization using Greenland Ice Sheet (GIS)
geometry. Ice sheet simulations with gravity-driven drainage may be sensitive to the value
of the permeability factor k0. For GIS, there is no common agreement on an appropriate
value of k0 since it depends on grain size and impurity content which may vary within the
glacier. k0 = 10−12 m2 seems to be a reasonable value (see [1]).

A realistic basal friction coefficient field β was calculated by solving a deterministic
inversion problem (see [8] for more details). In all of the simulations we have performed,
the ice velocity is given. Solutions with fully coupled ice velocity have not been tested yet.

The values of the parameters used for numerical simulations are shown in Table 3.1.
Finally, since equation (2.14) is strongly advection-dominated, the numerical discretiza-

tion is stabilized by means of the strongly consistent SUPG (StreamLine Upwind Petrov-
Galerkin) stabilization method [5].
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4. Results. We present results from 3D GIS uniform quadrilateral meshes of different
resolutions (see Fig. 4.1). The coarse mesh has 32 km resolution and the number of degrees
of freedom #DOF = 10824, whereas the fine mesh has 16 km resolution and #DOF =
41322.

(a) 32 km resolution (b) 16 km resolution

(c) 3D section

Fig. 4.1: Examples of GIS uniform quadrilateral meshes. Z axis scale is enlarged 100 times.
Color contours represent the ice velocity

The 3D meshes were generated by extruding quadrilateral meshes into hexahedral
meshes having layers denser close to the bedrock (see Fig. 4.1(c)). The number of lay-
ers considered in this work is equal to 5.

As mentioned earlier, ice velocity ([m yr−1]), basal friction coefficient β ([kPa yr m−1])
and the temperature at the surface ([K]) are taken as given and they are displayed in Fig. 4.2.

Fig. 4.3 shows a comparison between the performances of homotopy algorithm and
Newton’s method with backtracking algorithm for the coarse mesh.

As for the fine mesh, the nonlinear solver does not converge for α̃ > 75, thus the
continuation method is set up in such a way that γ = 1 corresponds to α̃ = 75. Moreover,
since in Albany an exporter for nodal fields has not been implemented yet, nodal fields were
converted to cell fields, exported, and visualized in Paraview.

First, we show the results from the enthalpy formulation obtained with the 32 km
resolution mesh. From Fig. 4.4, we point out that, since Tm(p) ≈ 273K, the model predicts
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(a) u at the surface [m yr−1] (b) u at the base [m yr−1]

(c) Basal friction coefficient[kPa yr
m−1]

(d) T at the surface [K]

Fig. 4.2: Prescribed data

a majority of the basal area in the center to be cold, whereas the ice is temperate at the
edge of the base. Furthermore, by comparing the temperature with the ice velocity at the
base, temperate regions match those regions where the velocity magnitude is higher. This
is reasonable since higher velocity magnitudes lead to higher basal friction heating that
increases the enthalpy and so the temperature of the ice sheet.

Observations do not support a particular upper bound on the porosity φ (water fraction),
but values above 3% are rare. By looking at Fig. 4.4(b), the model predicts reasonable values
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Fig. 4.3: Convergence of homotopy algorithm and Newton’s method with backtracking

of φ, and the water content seems to be consistent with the predicted temperature field and
the velocity at the base. However, we obtain non trivial values of φ in some areas of cold
ice. This non-physical result may be related to the approximations introduced by (3.1) and
(3.2). Further investigation is needed to improve the performances of both the homotopy
algorithm and the nonlinear solver.

(a) T at the base [K] (b) Porosity φ

Fig. 4.4: Prediction of T and φ at the basal surface for the coarse mesh

The claim that an enthalpy formulation would raise the liquid water fraction to abnormal
levels without any drainage term is justified by Fig. 4.5. It shows the predicted water
content when we disregard the gravity-driven drainage term. We notice that φ is above
15%, providing a further confirmation of the fact that a reliable enthalpy model needs to
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Fig. 4.5: φ at the basal surface without drainage of water

take into account the drainage of meltwater from ice.
With the aim of obtaining more accurate results, we have tested the model on the fine

mesh. Computed fields at the base are shown in Fig. 4.6. φ features slightly larger but
still reasonable values. However, the model still predicts non trivial water fraction in cold
ice as noticed when using the coarser mesh. This needs to be fixed in the future in order
to provide more reliable results. The predicted temperature field is similar to Fig. 4.4 and
basal melt rate Mb is consistent with porosity and velocity fields.

For the sake of visualization, we plot the computed field h − hm(p) in Fig. 4.6(b). By
recalling the approximation of the diffusivity discontinuity shown in Fig. 3.1, the basal areas
colored in blue (where h−hm(p) < −0.5 MJ m−3) are cold and those where h−hm(p) > 0.5
MJ m−3 are temperate, whereas we should be more careful in analyzing the thermal status
of ice in the remaining areas.

Finally, Fig. 4.7 shows φ in 2D vertical sections. Only the basal layer features non trivial
amount of meltwater, whereas the ice is cold in the other layers. According to the literature
[3], it is reasonable to expect small areas of temperate ice in the bulk of the ice sheet. This
may be due to the assumption of positive thickness of the basal water layer in the treatment
of the boundary condition at the base for temperate ice. Moreover, a refinement along the
z direction using more layers may provide more physical results.
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(a) T at the base [K] (b) h− hm [MJ m−3]

(c) Porosity φ (d) Basal melt rate Mb [m yr−1]

Fig. 4.6: Computed fields at the basal surface for the fine mesh
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Fig. 4.7: φ in three different 2D vertical sections
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5. Conclusions. In this work, we have presented a method for modeling the temper-
ature and the water content of polythermal ice sheets. An enthalpy formulation of such ice
masses is more realistic than cold-ice methods since it is energy-conserving and allows to
take into account the presence of liquid water in ice.

The possibility of meltwater raises modeling questions that are not present in cold-ice
methods. These issues include choices about temperate ice rheology, boundary conditions at
the ice-bedrock interface and drainage of meltwater from ice. A proper modeling of drainage
mechanism plays a key role in determining the reliability of a thermodynamic model. We
have taken care of this issue by using a gravity-driven drainage proposed by Hewitt and
Schoof. The advantage of including such a term is that it allows for more physical liquid
water content, whereas disregarding this term leads to abnormal levels of porosity.

A finite element discretization of the problem has been implemented in Albany. The
huge discontinuity of the diffusivities of cold and temperate ice leads to poor performance
of the nonlinear solver. This issue has been faced by introducing some approximations
involving the use of a continuation method. It allows us to smooth the discontinuity and
speed up the convergence of the nonlinear solver. Simplified boundary conditions at the
base were considered to avoid implementation-related difficulties expected in Albany. The
discontinuity affecting the boundary conditions at the basal surface was tackled by using
the continuation method as well.

Numerical results on Greenland ice sheet have been shown using two meshes with dif-
ferent resolutions. We showed that the model provides reasonable temperature and water
content fields in both cases. However, the implementation of the model needs to be im-
proved. The approximation introduced by using the continuation algorithm may still have
a negative impact on the accuracy of the results. Therefore, this issue as well as the as-
sumption of a positive thickness of the basal meltwater layer needs to be tackled in order
to provide more reliable results. For this purpose, we aim at improving the computational
model by including (2.22).

Future work will also consist of comparing the behavior of this model with other enthalpy
formulations present in literature and testing it on finer GIS meshes as well as Antarctica
geometries. Future efforts will also be devoted to improving the efficiency of the linear and
nonlinear solver. This may allow us to introduce discontinuities in the model without relying
on the continuation method.

Finally, we aim at investigating the performance of the fully thermodynamic model,
coupling the enthalpy formulation with the FO model.

Acknowledgments. We thank Ian J Hewitt for fruitful discussions.
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USING AND DEVELOPING NOVEL DATA ANALYTICS FOR
SYNTHETIC MICROSTRUCTURES GENERATED BY SPPARKS

ANDREW R. CASTILLO∗, JOHN A. MITCHELL† , AND STEPHEN D. BOND‡

Abstract. The primary goal of this work is to develop and implement analytical methods for quantita-
tive analysis of synthetic microstructures generated by the Sandia kinetic Monte Carlo code SPPARKS [6].
This report documents progress to that end as well as incremental work towards larger aspirations of making
process-structure-property connections [4] for complex processes such as welding and additive manufactur-
ing.

1. Introduction.

1.1. Motivation. The primary goal of this work is to develop and implement analyti-
cal methods for quantitative analysis of digitized microstructures such as those generated by
the Sandia kinetic Monte Carlo code SPPARKS [6] and experimentally obtained microstruc-
tures. The tools will be demonstrated by analyzing grain morphologies generated by kinetic
Monte Carlo (KMC) techniques [7, 5] that predict grain growth during welding and nor-
mal curvature-driven grain growth. These models use key process related parameters, such
as spatial and temporal temperature profiles associated with scanning and/or rastering a
heat source across material, producing qualitatively realistic looking microstructures; raster
speed and aspects of melt pool geometries are also key process parameters. These models
are used in this report to generate synthetic microstructures that can be further analyzed
for purposes of creating process-structure linkages and maps.

1.2. Approach. This report is on the development and application of microstructure
characterization methods based on data analytics. The methods are demonstrated on mi-
crostructures generated by a KMC model for simulating normal, curvature-driven grain
growth during welding using the SPPARKS software package. The normal grain growth
simulations [2] result in equiaxed grains while the welding simulations [5] give highly elon-
gated grains with curvature that are heterogeneous in size and shape as a function of distance
from the weld. Methods from data analytics [4], such as chord length distributions, two-
point statistics and principal component analyses (PCA) [1] are applied to the synthetically
generated microstructures.

A brief outline of the report is given. Section 2 gives a basic introduction and description
of the methods used in this report, including a description of the Potts [2] model for equiaxed
grains and the weld model [5] for spatially heterogeneous and non-equiaxed microstructures;
this section continues on to describe chord length calculations and two-point statistics for
use in PCA. Section 3 demonstrates the application of data analytic techniques to two sets
of microstructures and discusses the results. The last two sections of the report summarize
results, make conclusions about the data analytic methods demonstrated, and describe
future plans.

2. Description of methods. Development of methods to quantify locally-heterogeneous
microstructures are required to make process-structure-property linkages. These linkages
facilitate process optimization via data analytics with the goal of producing desirable mi-
crostructures. This section introduces and describes methods and their use in achieving
these goals. Specifically, microstructure generation, measure of cluster statistics, measure of
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windowed chord length distributions, and principal component analysis (PCA) as a means
of dimensionality reduction are described and demonstrated.

2.1. Modeling grain growth during welding. The Potts grain growth model [2]
has been modified to simulate grain growth during welding. Grain growth with non-uniform
grain boundary mobility due to temperature gradients are incorporated in the model as
described previously [3]; here, the model is extended to incorporate melting and solidification
of the melt pool accompanying welding. This model, which simulates grain growth during
welding, is an application in SPPARKS [6, 5], an open-source code developed for simulation
of microstructural evolution using Monte Carlo methods.

2.2. Spatial statistics. To quantify microstructures and build surrogate models that
capture process-structure-property linkages, a proper statistical representation of the weld
microstructure must be developed. The implementation of two-point statistics used in this
work is an extension of previous implementations [4]. The methods used are termed average
grain correlation and the cluster statistic. Both of these methods are dependent upon the
convolution of individual grains to form a spatial statistic of size S, where S is the number
of lattice sites in the microstructure, and differ from each other only by the method of
normalization. The aim is to quantify heterogeneity of the microstructure across various
process parameters. The cluster statistic describes the probability that two points separated
by an offset vector r, lie within the same grain. Formally, this is

f(r) =
N∑
n

S∑
s

mn
sm

n
s+r

SR
, (2.1)

where r is the chosen vector, s is a lattice site index, S is total number of lattices sites, SR
is the number of sites that accomodate s and s+r, n is a region of interest with a total of N
regions. In this work, each region is a grain, and mn

s is the probability density for region n
of site s; in practice, mn

s ∈ {0, 1} is a binary representation of region n of a microstructure
for all sites s ∈ 0, 1, 2, . . . , S; this is illustrated in Figure 2.1. Note that f has the following
properties

f(0) =
N∑
n

S∑
s

mn
sm

n
s

S
=
S

S
= 1, lim

|r|→∞
f(r) = 0. (2.2)

In this work each grain is considered separately in the computation of statistics, thus N
is equal to the number of grains. The mean autocorrelation is calculated by normalizing
equation 2.1 by N instead of SR. Casting the metric as a mean implies that f(0) is equal to
the average grain size across the whole microstructure. In its current form, this formulation
is computationally expensive. To reduce computational cost, convolutions are performed in
Fourier space; this is shown below.

F (mn
s ) = Mn

k =
S∑
s

mn
s e

2πisk
S (2.3)

f(r) =
∑N
n F

−1(Mn∗
k Mn

k )
SR

(2.4)

Computational cost can be further reduced by identifying a bounding box for each
grain and performing convolutions over the reduced volume; treating the microstructure
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and padding the boundary of the box must be carefully done so that spurious boundary
effects are not introduced. The padded region along each coordinate axis is nominally twice
the size of the original grain bounding box; the final padded region size along an axis is even
or odd depending on whether the original full image contained an even or odd number of
sites. This process is shown in Figure 2.2.

Fig. 2.1: Microstructure Discretization Scheme

Fig. 2.2: Shrink Calculation Domain

It is important to note that after the reduction to this size, the resulting statistic must
be padded, or reduced to the resulting size, S, of the final statistics. This method presents a
global statistic that captures the heterogeneity of the grains throughout the microstructure.
However the spatial dependence of grains is lost in this approach, making additional metrics
necessary if an accurate microstructure synthesis from the given statistics are needed.

2.3. Chord length distributions. The implementation of chord length distribu-
tions forms an n-point statistic used to quantify weld microstructures. The challenge is
to characterize regions of spatially homogeneous grains within the microstructure. The
weld microstructures have periodic boundary conditions along the weld axis (y-axis) and
non-periodic boundary conditions through the thickness (z-axis). Based on these condi-
tions, the microstructures are partitioned into spatially homogeneous volumes bounded by
the green regions shown in Figure 2.3.

These partitions are defined by “windows” on the x − z plane denoted by (dx, dz). In
this example, a window size of (15, 35) was chosen, which partitions the microstructure into
13 regions parallel to the weld axis. Using this method the chord length distribution for
Lx, Ly and Lz can be found for a given a region. The chord length is the length of a line
segment within a grain along a given direction x, y or z, and example chords are shown in
Figure 2.4. As an example, the distribution for the y direction for a windowed region R is
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Fig. 2.3: Weld microstructure windowing for chord length distributions. The weld mi-
crostructure is partitioned into R regions to perform chord length calculations. The green
lines denote the boundaries of a region.

Fig. 2.4: Visualization of chordlengths for x direction (red) and y direction (purple) for an
example microstructure

Ly(d) =
SR∑
s=1

cds
SR

; d ∈ 1, 2 . . . Dy; cds ∈ {0, 1}, (2.5)

where SR is the total size of a windowed region, c is 1 if position s in the region of interest is
inside a chordlength denoted by d, and otherwise is 0. Dy is given by the total number of sites
along dimension y in this work. The chord length distribution implemented is the weighted
chord length distribution, which gives the probability for a point in the microstructure being
within a certain chord length along an axis.

2.4. Principal component analysis (PCA). PCA is a form of dimensionality re-
duction. Using PCA, each point in a large dimensional data set is approximated by its
projection onto a much lower dimensional orthonormal basis. Surrogate models for process-
structure-property linkages are constructed using a significantly reduced basis set derived
from the PCA. PCA begins with a data matrix X, which is mean centered, and which
has shape m × n, where m is the number of microstructures (or observations) and n is
the total size of the statistics applied to the microstructure. In this context, if only one
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spatial statistic is considered, then n is the number of sites in the synthetically generated
microstructure.

It is assumed that n is much larger than m. Using the reduced singular value decom-
position, the data matrix is multiplicatively decomposed

X = USV T =
m∑
i=1

Si~Ui~V
t
i , (2.6)

where S is a diagonal matrix whose diagonal values S1 ≥ S2 ≥ S3 ≥ . . . , Sm ≥ 0 are singular
scalar values, ~Ui are columns of matrix U which has shape m×m, and ~V ti are column vectors
of V t which has shape m× n. Note that X can be approximated by

XK =
K∑
i=1

Si~Ui~V
t
i , (2.7)

where K << m. This is the best rank K approximation as measured by the Frobenius norm
‖.‖F

‖X −XK‖2F = S2
K+1 + . . .+ S2

m, ‖X‖2F = S2
1 + S2

2 + . . .+ S2
m. (2.8)

A ratio of the two norms provides a measure of how well XK approximates X; later in this
report, scree plots are computed using the following formula, where the quality measure e
varies between 0 and 1.

e = 1− ‖X −XK‖2F
‖X‖2F

(2.9)

Once the decomposition above is computed, a row of X, ~Xt
j , can be projected onto the span

of the first K right singular vectors of V using dot product 〈., .〉

~Xt
j ≈ 〈 ~Xt

j , ~V1
t
〉~V t1 + . . .+ 〈 ~Xt

j , ~V
t
K〉~V tK . (2.10)

The coefficients 〈 ~Xt
j ,
~V t1 〉 are known as the principal component scores.

3. Demonstration calculations. Organization of this section is split between cluster
statistics on equiaxed grains, weld microstructure generation, application of cluster statistics
to weld microstructures, PCA on cluster statistics, application of windowed chord length
distributions to weld microstructures, and PCA on chord length distributions. The purpose
of this section is two fold: to introduce these measures for the weld microstructure and
display the information generated from the measures, and to perform PCA and demonstrate
the viability of these statistics to build a process-structure-property linkage.

3.1. Cluster statistics-equiaxed grains. Cluster statistics capture the probability
of the head and tail of a vector being within the same grain of a microstructure. Interpre-
tation of this statistic is that the vector tail (center of statistic) is located inside a grain
|r| = 0 and hence the statistic value is 1; the vector head can take on any point in the
microstructure and hence the statistic value(s) limit is 0 with increasing |r| since the grains
are finite in size.

Equiaxed microstructures were simulated using the Potts grain growth model, and re-
sults of demonstration calculations are shown in Figure 3.1; this figure depicts two mi-
crostructures representing microstructural evolution at two different time steps from a grain
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Fig. 3.1: Cluster statistics is applied to equiaxed microstructures. The resulting statistics
exhibit a radial distribution which increases in size respective to the increase in average
grain size

growth simulation. Visually, the microstructures appear to be equiaxed; using the cluster
statistic defined in Section 2.2, this fact is quantified and captured by the near radial distri-
bution of the statistical field. Comparing the statistic between the two microstructures, the
cluster statistic captures increase in grain size as an increase in the diameter of the radial
probability distribution; for the microstructure with larger grains, this reflects the increased
probability for larger values of |r| being within the same grain.

3.2. Cluster statistics-weld model. The cluster statistics were applied to weld mi-
crostructures in an effort to capture spatial heterogeneity. A 3D weld microstructure with
lattice dimensions of (200, 500, 35) was generated using the SPPARKS model described in
Section 2.1. Twenty microstructures, with simulated weld velocities of 5, 6.25, 7.5, 9, and
12 ls/MCS, were used for the study. Units of the velocity are in lattice site per Monte Carlo
Step (MCS). Representative microstructures are shown in Figures 3.2(a) through 3.2(e).

Figure 3.3 shows 2D spatial statistics for xy planar cuts at different levels along the
z-axis of a weld microstructure; The weld axis and direction of applied weld (left to right)
is apparent by the line of symmetry formed by grains.

Figure 3.4 shows zoomed in spatial statistics for Figure 3.3. There are significant differ-
ences between the statistics. Statistics 1 and 3 have “wings” that are more apparent than
in statistic 2. The apparent wings are composed of elongated grains along the weld axis;
elongated grains are more regularly distributed in cuts 1 and 3 than in 2; the central and
circular aspect of the statistic arises from equiaxed grains at distances further from the weld
axis in the heat affected zone. Differences in grain size and shape across these cuts are due
to differences in temperature gradients. This spatial heterogeneity is expected and captured
with the 2D cluster statistics. Further insight may be gleaned by extracting line statistics
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(a) velocity=5 ls/MCS (b) velocity=6.25 ls/MCS

(c) velocity=7.5 ls/MCS (d) velocity=9 ls/MCS

(e) velocity=12 ls/MCS

Fig. 3.2: Representative weld microstructures for the chosen process parameters are shown.
Twenty microstructures for each weld velocity were simulated.

along particular directions (Figure 3.5).

The line statistics show a rudimentary analysis of the spatial statistics. An effective
orientation for the wings is found and shown by the blue and green lines. This orientation is
thought to be representative of the direction of average elongation during the weld process.
Although they appear symmetric, they are not perfectly so. The average orientations given
by the blue and green lines are 40.7 and 38.3 degrees from the weld axis respectively; this
discrepancy is due to statistical variance and the number of elongated grains sampled. The
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Fig. 3.3: Spatial statistics for planar cuts at z elevations through thickness of weld; cuts 1
and 2 are the closest and furthest from the top surface respectively; cut 3 is evenly spaced
between cuts 1 and 2; images for cuts 1 through 3 are arranged from left to right respectively.

probability distributions are similar but diverge noticeably from the line statistic along the
weld axis (orange line) at radii larger than 20 ls.

To more fully take advantage of the spatial statistics and demonstrate their utility, they
are used to quantify differences in weld microstructures by varying a single process parameter
while keeping all other parameters constant. In this case weld velocity was varied from 5
to 12 ls/MCS over 100 weld-simulations; microstructures at each velocity study are shown
in Figures 3.2(a) through 3.2(e). Each starting microstructure was unique to ensure each
simulation was statistically equivalent but had a distinct starting microstructure. Each run
produced a 3 dimensional microstructure with dimensions of (200, 500, 35) for a total of
3, 500, 000 lattice sites. All other process parameters were kept constant. PCA, as defined
in Section 2.4, was used to represent microstructures with reduced dimensionality. The
results of PCA using cluster statistics are shown in Figures 3.6 and 3.7.

Visual inspection of Figures 3.6 and 3.7 show that PCA of microstructure statistics
cluster by weld velocity. The principal scores for each microstructure: PC1, PC2, and
PC3, are calculated from the dot product in Equation 2.10 using the singular vectors
corresponding to the three largest singular values computed using the whole dataset. There
is a clear trend in PC1 with weld velocity; as the weld process velocity decreases, PC1
increases. This distinct trend presents opportunities to build process-structure linkages.
The scree plot shown in Figure 3.8 is found using Equation 2.9. The scree plot describes
the total variance captured as a function of number of principle components. Viewing
the scree plot, 89.9 percent of the variance is captured with 1 principal component and
96 percent with three. Further inspection of Figures 3.6 and 3.7 shows that the largest
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Fig. 3.4: Zoomed in spatial statistics from Figure 3.3

intravariance is exhibited by weld microstructures produced from a velocity of 5 lattice
sites per Monte Carlo Step (ls/MCS). Conversely, the smallest intravariance appears to be
exhibited by microstructures produced from a velocity of 12 ls/MCS. There appears to be a
large spread over PC2 for microstructures ran at a velocity of 5 ls/MCS. This large spread
begets the question of whether the dimensionality reduction may be skewed or dominated
by the large intravariance exhibited by the 5 ls/MCS microstructures. This may play a role
in the future when developing an inverse predictive model.

It has been shown that the application of the spatial statistics in conjunction with
PCA has successfully reduced high dimensional data sets to much lower dimensionality.
More importantly, with further development of these characterization tools, a quantitative
relationship may be found which may enable quantifying the process-structure linkages.
Developing predictive models relating process variables to microstructure based on PCA is
promising. These models infer unknown process parameters given a microstructure for which
a process-structure linkage has been built for similar microstructures. This is accomplished
by projecting mean centered statistics of the given unknown microstructure into the existing
PC space as shown by Equation 2.10. The PC scores from the unknown microstructure are
then used to infer the given velocity, in this case by inverting the process-structure model. To
perform the inversion, surrogate models for the PC scores as a function of the independent
variable (such as velocity) are developed. The simplest of these models are polynomial fits
for the mapping of PC components to the process parameters. The use of this approach
assumes that any processes applied to the microstructure of interest are spanned by the
family of microstructures used for building the initial linkage. In general, surrogate models
can be produced by tracking the evolution of microstructures through sequential Monte
Carlo Steps. By concentrating on resulting microstructures at various steps in time, process
paths can be built in PC space. This type of model requires non-intersecting distinct process
paths. Due to the heterogeneity of the weld process and microstructure in time, the initial
approach to use resulting microstructures from chosen velocities was taken. Currently,
the example microstructures are varying only a single process parameter, future work will
require the mixing of various process parameters to ensure distinct clustering from resulting
microstructures.
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Fig. 3.5: Spatial statistics for the weld surface are shown in the top figure. Statistics are
extracted from the orange, green and blue lines. The probabilities on the lines are shown in
the bottom figure. The blue and green line diverge noticeably from the orange line around
a vector length of 20.

3.3. Chord length distribution-weld model. Another approach to quantifying
weld microstructures is the use of various chordal analyses. The aim is to perform cal-
culations on spatially homogeneous regions. This is done by taking rectangular volumes
spanning the whole length of the weld direction, or y-axis of the microstructures. These
rectangular volumes are defined by window sizes along y-axis of the microstructure.

Using window sizes of (9, 35), chord length distributions Ly and Lz along the y and z
respectively are calculated. The partitioning of these regions is shown in Figure 3.9. The
resulting chord length distributions, Ly and Lz, for each of the 22 regions are depicted
in Figures 3.10, 3.11 and Figures 3.12, 3.13; note that regions span the entire length of
the simulation domain along the y and z-axes. Each filled curve presents the chord length
distribution of a region centered at the x position along the microstructure. The height
of each curve denotes the probability of being within a chord length specified by the axis
parallel to the distribution curve in a given region. Each region is specified by a different
color. For these microstructures the outermost grains at the bounding simulation domain
must be taken into consideration; in the following statistics, the outermost grains were
used in calculation of the chord length distribution. This approach is taken since Ly and
Lz included many regions in which only one or two grains were found across the whole
dimension. In order to distinguish these cases the outermost grains are included, however
the inclusion or rejection of chords produced by grains at the simulation bounds is still
under consideration. The purpose of the windowed volumes in the chord length distribution
calculation is to include a larger number of similar grains in order to produce a smooth
distribution. If too small a volume is selected the distribution is sampled from a relatively
small data set; if too large a volume is selected then heterogeneity is lost because chord
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Fig. 3.6: Cluster statistics PCA: The first three PC scores of the cluster statistics for
corresponding weld velocities are shown. Each point provides the PC scores for the cluster
statistics of a microstructure where each color denotes a different weld velocity.

lengths representing many different grain sizes and shapes are lumped together.
Figures 3.10, 3.10 and 3.12, 3.13 show that the probability of being within a longer

chord length grows as the weld axis is approached. The chord length variation also grows as
the weld axis is approached, unless a region is dominated by grains that travel through the
whole domain in the respective direction (Figures 3.12, 3.13). Further analysis is difficult
due to the jagged distributions. There are smooth distributions in the outer regions where
the majority of the grains are in the base material and are relatively equiaxed. As the weld
axis is approached grains are larger and more heterogeneous, resulting in a smaller sample
set leading to jagged distributions.

PCA is applied to the above chord length distributions as shown in Figure 3.14 and 3.15.
In this case both distributions in the weld direction and through the thickness are used as
inputs. Results show clustering similar to what is found using the spatial statistics. Again,
there is a clear trend between the weld velocity and the first principle component. This
distinct trend of increasing velocity with a decrease of PC1 makes apparent the opportunity
to form process structure linkages. Comparing Figures 3.6 and 3.7 to Figures 3.14 and 3.15
we see the relative intravariance for different weld velocities are similar as well. However,
the PC scores from the differing clusters with respect to velocity appear to overlap more
using the chord length distributions compared to the cluster statistics. The amount of
variance captured with the first principle component is 66.8 percent while three components
capture 78.6 percent of the variance. The scree plot characterizing the amount of variance
captured with the addition of principle components is shown in Figure 3.16. The PCA
results from the cluster statistics appear to be more promising for establishing models in
the lower dimensional PC space for the weld microstructures. Although the cluster statistics
provide better results in this case, the technique used to find the chord length distribution
may provide better results for other microstructures. Both methods are retained in order
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Fig. 3.7: Cluster statistics PCA: View 2

0 20 40 60 80 100

Number of PCs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
u
m

u
la

ti
v
e
 V

a
ri

a
n
ce

 C
a
p
tu

re
d

Fig. 3.8: Scree Plot for PCA of cluster statistics. The scree plot depicts the amount of
expression, or variance, captured with the addition of principle components. Through the
application of cluster statistics, 96 percent of the variance across statistics is captured using
3 principle components.

to provide more options in future material process-structure linkage problems.
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Fig. 3.9: Depiction of windowing used in examples; window size (9, 35);microstructure cor-
responds to weld velocity 7.5.

Fig. 3.10: Chord length probability along weld direction, Ly, weld velocity 7.5, View 1.
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Fig. 3.11: Chord length probability along weld direction, Ly, weld velocity 7.5, View 2.

Fig. 3.12: Chord length probability along thickness direction, Lz, weld velocity 7.5, View 1.
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Fig. 3.13: Chord length probability along thickness direction, Lz, weld velocity 7.5, View 2.
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Fig. 3.14: PCA of Combined Chord Length Distributions: The first three PC scores of
the Chord Length Distributions for corresponding weld velocities are shown. Each point
provides the PC scores for the Chord Length Distribution of a microstructure where each
color denotes a different weld velocity.
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Fig. 3.15: PCA of Combined Chord Length Distributions: View 2
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Fig. 3.16: Scree plot for PCA of Combined Chord Length Distributions. The scree plot
depicts the amount of expression, or variance, captured with the addition of principle com-
ponents. Through the application of the chord length distribution statistics, 78.6 percent
of the variance across statistics is captured using 3 principle components.
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4. Conclusions. This report documented analytical methods developed for quanti-
tative characterization of digital microstructures such as those generated by the Sandia
kinetic Monte Carlo code SPPARKS [6]. Kinetic Monte Carlo models used for grain growth
during welding were used to generate microstructures for characterization. Methods for
quantifying microstuctures were two-point statistics, chord length distributions, specialized
windowing strategies for capturing heterogeneities, and PCA for quantifying complex and
varied microstructures using simple low dimensional metrics. These methods were demon-
strated by applying them to microstructures generated by welding simulations, where all
the process variables, except welding velocity, were held constant. While grain shapes were
not specifically addressed, the PCA figures showed that grains of different shapes resulting
from different weld velocities clustered. The approach used to generate two-point statistics
combined all grains from the microstructure image, which in effect smeared heterogeneity;
using this approach, some spatial heterogeneity information was lost; windowing strategies
to group grains by the time-temperature histories they experienced during welding were
more successful in extracting heterogeneity. PCA showed great promise. The variance
captured by the first three principle components for the two-point statistics was greater
than the variance captured using the chord length distributions. PCA scores obtained from
welds formed at different velocities not only clustered but also exhibited a distinct trend of
a decrease in the weld velocity process parameter with an increase of PC1.

5. Planned future work. Future work for building a surrogate model has been briefly
addressed in the conclusions section. The main steps forward regard weld model develop-
ment in microstructural evolution. This is focused on implementing algorithms in SPPARKS
to accommodate constraints and augment grain growth with grain orientations. In order to
correctly model orientations, parameters must be chosen in accordance with a material sys-
tem. Initialized microstructures of a material system may have a preferred orientation. The
majority of grain growth within the weld microstructure is controlled by epitaxial growth.
Grain growth in SPPARKS focuses on the computation of the change in grain boundary
energy; therefore misorientation appears to be a logical choice in modeling orientation. The
grain boundary character is conventionally defined by 5 parameters describing the misorien-
tation between neighboring grains and the grain boundary plane. The use of misorientation
would be incorporated using boundary mobility and would be dependent upon tempera-
ture and the local misorientation relative to neighboring grains. Grain boundary mobility
already exists as a parameter in the current grain growth model. The treatment of low
and high angle grain boundaries may also need to be taken into consideration separately.
For example low angle grain boundaries exhibit increases in grain boundary energy as mis-
orientation increases. Conversely, high angle grain boundaries may be expected to have a
constant, maximum grain boundary energy. The above is in no way a comprehensive road
map to develop the algorithms necessary to develop microstructural evolution capabilities
in SPPARKS but presents a starting point. The incorporation of orientations presents new
venues of analysis involving orientation and misorientation distribution functions. The ca-
pability also allows extensions to other techniques, such as the implementation of crystal
plasticity to extract mechanical properties from differing weld microstructures.
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DENSITY FUNCTIONAL THEORY APPLIED TO TRANSITION METAL
ELEMENTS AND BINARIES: DEVELOPMENT, APPLICATION, AND

RESULTS OF THE V-DM/17 TEST SET

ELIZABETH R. DECOLVENAERE∗ AND ANN E. MATTSSON†

Abstract. Density functional theory (DFT) is undergoing a shift from a descriptive to a predictive
tool in the field of solid state physics, heralded by a spike in “high-throughput” studies. However, methods
to rigorously evaluate the validity and accuracy of these studies are lacking, raising serious questions when
simulation and experiment disagree. In response, we have developed the V-DM/17 test set, designed to
evaluate the ability of DFT’s various implementations to reproduce experimental results in periodic transi-
tion metal solids. Our test set evaluates 26 transition metal elements and 80 transition metal alloys across
three physical observables: lattice constants, elastic coefficients, and formation energy of alloys. Whether or
not a functional can accurately evaluate the formation energy offers key insights into whether the relevant
physics are being captured in a simulation, an especially important question in transition metals where
active d-electrons can thwart the accuracy of an otherwise well-performing functional. Our test set captures
a wide variety of cases where the unique physics present in transition metal binaries can undermine the
effectiveness of “traditional” functionals. By application of the V/DM-17 test set, we aim to better char-
acterize the performance of existing functionals on transition metals, and to offer a new tool to rigorously
evaluate the performance of new functionals in the future.

1. Introduction. In the last decade, density functional theory (DFT) has shifted in
use from a primarily descriptive to an increasingly predictive tool in the field of solid state
physics [42]. However, compared to the field of quantum chemistry, solid-state DFT has only
the most rudimentary standards of verification, validation, and reproducibility [11] – vital
aspects in the design and use of a predictive method. The shift in focus, from descriptive to
predictive, has been heralded by a spike in high-throughput studies [39, 65, 5, 9, 12, 21, 38],
which leverage increasingly powerful and inexpensive computing resources to churn through
tens or hundreds of thousands of structures in search of novel materials, properties, or
behavior. Unfortunately, without rigorous methods to evaluate the accuracy and precision of
DFT-derived results, the reliability of any of these studies is questionable when experiments
and simulation disagree [15, 48], as is often the case.

While several verification and validation studies have been performed on periodic sys-
tems [36, 37, 26, 72, 41, 24], these simulations all have compared various DFT codes against
each other, and focused on lattice constants or volume, or were limited to a small and not
necessarily representative set of pure or binary metals and oxides. The most popular high-
throughput databases have been excellent at providing input files capable of reproducing
published outputs [25, 60, 13], but usually concentrate on only the Perdew-Burke-Ernzerhof
(PBE) [49, 50] functional. Individual studies in other publications, while sometimes en-
compassing a greater spread of functionals, often provide insufficient information on input
parameters such that results are difficult to compare and impossible to reproduce. Regard-
less of the context, precious little attention has been given to situations where DFT and
experiment have strong, fundamental disagreements.

To address the above issues, we have developed a test set designed to evaluate the abil-
ity of DFT’s implementations to reproduce experimental results in periodic transition metal
(TM) solids. Our test set, V-DM/171, evaluates 26 TM elements and 80 TM alloys across
three physical observables: lattice constants, elastic coefficients, and formation energy of

∗University of California, Santa Barbara, elizabeth@umail.ucsb.edu
†Sandia National Laboratories, aematts@sandia.gov
1The test-set name was chosen in the style of quantum chemistry test sets, V coming from the software

package VASP used to develop the set, DM for Decolvenaere and Mattsson as the two contributors, and 17
from the year of completion, 2017



164 The V-DM/17 Test Set

alloys. Our enumeration of structures for the binary compounds takes a hybrid approach,
blindly enumerating configurations containing up to six atoms in the symmetrically-distinct
supercell, and also containing experimentally observed phases (when known) and similar
supercell decorations. Overall, our full test set contains roughly 12,000 structures; we addi-
tionally aim to provide mini and micro test sub-sets for fast, computationally-cheap initial
evaluations.

The V-DM/17 test set is designed to capture the wide variety of unique physics that
arise in TM alloys, a consequence of the interaction of chemically active d -electrons [43].
These interactions are often ill-captured by present functionals [22], as most functionals
are designed to focus on and accurately solve one “model” electron system or situation.
For example, the local density approximation [28] (LDA) functional models the uniform
electron gas. Some functionals, such as PBE for solids (PBESol) [54] and the Armiento
and Mattsson functional (AM05) [3, 40], are modeled to solve systems with more “mixed”
character, but these functionals still fail to capture the simultaneous highly localized and
delocalized electron behavior that can arise in systems with active d - and s- electrons.
Additionally, multiple elements and many alloys among the TMs have strong and sometimes
complex magnetic characteristics [61]; our test set is designed to include representative
cases of potential magnetic behaviors. Finally, late-period TMs have important chemical
contributions from spin-orbit coupling [59, 66], a phenomena very poorly modeled by most
common formulations of DFT [47]. Our test set considers multiple alloy systems where the
presence or lack of spin-orbit coupling is critical in correctly predicting material properties.

2. Simulation Methods. All of our simulations were carried out using the Vienna
Ab initio simulation package [29, 30, 32, 31] (VASP) with projector-augmented wave (PAW)
pseudopotentials [6, 33]. Enumeration of superstructures, as well as management of high-
throughput simulations, was handled by the CASM: A Clusters Approach to Statistical
Mechanics [57, 64, 58, 16] software package. All calculations were performed at zero temper-
ature and pressure, with spin polarization, using the interpolation formula of Vosko, Wilk,
and Nusair [70], and with automatically-generated, gamma-centered k -point meshes [45].
Electronic self-consistency loops were converged to energy changes below 10−3 meV, while
ionic relaxations were converged to energy changes below 1 meV. The general simulation
scheme consisted of two steps: first, repeated relaxation runs were performed until the sim-
ulation converged within 3 or fewer ionic steps, then, a final static run was performed with
no changes allowed in cell geometry or ionic positions. This scheme was chosen to avoid
problems introduced by possible non-isotropic changes in the basis set over a volume change
during a single run. A quasi-Newton ionic relaxation scheme was used, RMM-DIIS [32], as
implemented in VASP. During relaxation runs the method of Methfessel-Paxton [44] was
used for electronic smearing. In most cases, the final static run switched to the tetrahedron
method with Blöchl corrections [7] for smearing. Energy cutoffs, as well as k -point meshes,
were chosen for each element and binary using the techniques described in Section 2.1. Spe-
cific functionals used, as well as special simulation schemes used with those functions, are
described in Section 2.2.

2.1. Convergence Criteria. As formation energy forms such a large component of
our test set metrics, ensuring numerical convergence is especially critical. Rather than aim
for a particular k -point mesh density or energy cutoff in some global sense, each element
was treated individually and converged, with respect to k -point mesh and energy cutoff, to
within 1 meV. This was achieved in two stages:

First, the k -point mesh was optimized, using the fully-automatic k -point generation
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scheme provided by VASP. For each element, a series of k -point lengths2 were enumerated,
and calculations were performed with energy cutoffs of 150% of the VASP default value.
Each cell was fully relaxed, and then a static run was performed. When the energy difference
between two subsequent k -point lengths was less than 1 meV and remained less than 1 meV
at increasing k -point densities, this value was taken as the converged k -point length. Step
sizes were of 1 angstrom, and the starting k -point length was 30 angstroms.

Next, using the k -point length previously determined, a series of energy cutoffs were
enumerated starting from 150% of the VASP default cutoff for that element. Again, the
starting geometry was that of the experimental primitive cell, and each energy cutoff was
allowed to independently relax, and a final static run was used to collect data. When the
energy difference between two subsequent energy cutoffs was less than 1 meV and remained
less than 1 meV at increasing cutoffs, this value was taken as the converged energy cutoff.
Step sizes were 5 eV.

In all cases, starting structures were taken from the Materials Project [25] database,
using primitive cells corresponding to the lowest-temperature experimentally observed struc-
ture. For binary compounds, the higher of the two components’ k -point length and energy
cutoff was used. Both k -point and energy cutoff convergences were independently performed
for each functional explored. While not used as a convergence criteria, the convergence of
cell volume and lattice constant at the converged k -point and energy cutoff values was
collected.

2.2. Functionals Explored. To demonstrate the wide variety of behaviors captured
by our test set, we ran simulations across eight different functionals, detailed in table 2.1.
Our purpose here was two-fold: our test set characterizes the behavior of these functionals
in the case of transition metals, and the differences in behaviors across these functionals
demonstrates the necessity of our test set. The functionals chosen represent a wide va-
riety of techniques used in DFT in materials science and different rungs on the “Jacob’s
ladder” [55] of functional accuracy. Specifically, we aimed to analyze the most commonly
used functionals (PBE and PBESol), in addition to a representative of the local density
approximation, historically the most commonly used generalized gradient approximation
functionals, a subsystem functional, and meta-generalized gradient approximation function-
als with historically good performance for transition metals.

All functionals were fully and self-consistently converged with regards to both electronic
and ionic degrees of freedom (lattice constants and atom positions). For PZ, PW91, BLYP,
PBE, and PBESol, simulations were carried out in a straightforward manner using the tech-
niques described at the start of this section. For AM05, rTPSS, and M06-L, each configu-
ration first underwent a single relaxation run using PBE. Then, the resulting wavefunctions
were used as the starting condition for the chosen functional3. For AM05 and M06-L, the
chosen algorithms (All/Damped) were incompatible with tetrahedral smearing, and so the
final static run was also performed using the smearing method of Methfessel-Paxton. The
GW-labeled PAW-PBE potentials from the v.54 set [67] were used in all simulations except
for PZ, where the GW-labeled PAW-LDA potentials were used instead.

We have specifically chosen not to analyze any DFT+U [2] techniques. The DFT+U
functionals, which employ a Hubbard-U correction to the on-site coulomb interaction term,
add an additional one or two degrees of freedom to our elements and binaries, respectively.

2A k -point “length” generates a k -point mesh along reciprocal direction ı̂ with max(1, lk|~bi| + 0.5)

spacings, where lk is the k -point length, and ~bi is the reciprocal lattice vector along ı̂.
3Specifically, a single run was performed using the PBE functional, and then the WAVECAR containing

the Kohn-Sham wavefunctions was copied over for use as a starting condition for the next run, this one
using the listed functional.
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Name Type Algo

PZ [56] Local Density Approximation Normal

PW91 [51, 52] Generalized Gradient Approximation Normal

BLYP [4, 35] Generalized Gradient Approximation Normal

PBE [49, 50] Generalized Gradient Approximation Normal

PBESol [54] Generalized Gradient Approximation Normal

AM05 [3, 40] Sub-System Functional All/Damped

rTPSS [63, 53] Meta-Generalized Gradient Approximation Normal

M06-L [71] Meta-Generalized Gradient Approximation All/Damped

Table 2.1: Table of functionals used to test the V-DM/17 test set, indicating the func-
tional’s common name (usually an acronym), the general category of the functional, and
the electronic convergence algorithm (according to VASP’s tags) used with that functional.

Additionally, the U’s are semi or totally empirical, usually chosen to match up some exper-
imental parameter (often the band gap) to a simulation result. While some self-consistent
methods exist to determine the U in-situ [34, 10, 1], these approaches are computationally
involved and therefore beyond the scope of our analysis.

We have also neglected to include any hybrid-type functionals, owing primarily to the
massively increased computational cost associated with hybrids. Not only can hybrid func-
tionals be thousands of times slower and have significant memory requirements [62, 8, 17],
but additionally, results for transition metals in the past have been poor or aphysical [26,
17, 22]. Finally, for both DFT+U and hybrid functionals, these techniques result in energies
that are no longer purely functionals of the electron density, and hence, these techniques
are not “true” Kohn-Sham DFT.

While the GW PAWs include scalar-relativistic corrections, we have not made any
attempts to include additional relativistic terms in our analyses. While all calculations were
performed using spin-polarization, the magnetic moments calculated were both collinear
and decoupled from the crystal structure. Although for some TM binaries non-collinear
magnetic effects (e.g., in Ni-Fe [61]) or spin-orbit coupling contributions (e.g., in Co-Pt [46])
can be important, the computational difficulty of performing these calculations in VASP
puts them beyond the reach of our current high-throughput infrastructure.

3. The V-DM/17 Test Set. The V-DM/17 test set consists of 26 single-element TM
systems and 80 TM binaries, and contains approximately 12,000 structures. Our choice of
systems represents roughly one quarter of the potential space spanned by all possible TM
binaries, offering a compromise between completeness and computational efficiency. While
use of the entire structure space is recommended, we will in the future provide guidelines
for “mini” and “micro” versions of the test set that consider decreasingly sized subsets of
increasing significance. While significantly larger than the test sets traditionally found in
quantum chemistry, the efficiency of periodic codes for “simple” bulk systems (i.e., small unit
cells), as well as the increasing availability of cheap but powerful computational resources,
ensures our test set remains accessible and justifiable in use.
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3.1. Single-Component Systems. Of the potential space of transition metals, we
have chosen to include elements in periods 4–6 and groups 3–11, excluding Lutetium. Lu is
often considered a lanthanide instead of a transition metal; furthermore, the f -electrons in Lu
actively participate in determining the electronic structure [18], putting it outside the scope
of this test-set. Group 12, containing zinc, cadmium, and mercury, was also excluded as these
elements contain completely filled d -shells and therefore behave significantly differently than
other metals in their respective periods. For the 26 remaining elements, the experimentally
observed lowest-temperature crystal structure was used to select the primitive cell, with
geometry inputs acquired from the Materials Project database. These primitive cells were
used for all convergence tests, as well as inputs for enumeration for binary mixtures.

3.2. Binary Systems. Combinatorially,
(

26
2

)
= 325 binary mixtures of our selected

TMs exist; from this we selected a subset of 80 according to several criteria. We wished
our test-set to explore as many different electronic structure phenomena as possible while
utilizing the minimum number of required calculations, both counting by number of binaries,
and total number of structures. Our constraints, in order of priority, were then:

1. Each element is present in 6–7 binaries
2. Each element shares a binary with 2–3 elements from each period
3. No element shares a binary with two elements in the same period and in adjacent

groups
4. Each element participates in at least one binary where it is known to form an

ordered mixed phase, and one where it is known to form no ordered mixed phases
5. Each element shares a binary with at least one element from each space group

Constraints 1, 2, and 3 were strictly adhered to; constraint 4 was adhered to as a
fortunate consequence of constraints 1–3, and constraint 5 was adhered to when possible.
For elements like Mn with a unique space group for the primitive cell, due to constraints
1 and 2, only some elements could share a binary with Mn. The resulting binaries chosen,
as well as a qualitative view of all possible binaries with experimental mixing behavior
indicated, is shown in Figure 3.1.

For enumerating structures, if both elements in the binary shared a space group, the
element with the lower atomic number was used to prototype the enumeration. If both ele-
ments did not share a space group, two enumerations were performed, one using each primi-
tive cell. Enumeration was carried out by constructing all symmetrically-distinct supercells
containing up to 6 atoms, and decorating those supercells with all possible symmetrically-
distinct configurations. This scheme resulted in 137 unique configurations for all structures
enumerated from one-atom primitive cells, and 63 unique configurations for all structures
enumerated from two-atom supercells. If one or more known ordered phases formed in a
binary, that ordered phase was also included in the enumeration, as well as any alternate
decorations of the underlying supercell if the supercell contained 10 or fewer atoms. Oth-
erwise, only the exact, experimentally-observed structure was enumerated. If the ordered
phase did not share a space group with either of the elemental primitive cells, this process
was carried out separately as a third enumeration. In the case of Mn, owing to the relatively
large size of the primitive cell (32 atoms), a body-centered-cubic primitive cell was used for
enumeration of Mn binaries, though the true primitive cell was used as a chemical reference.

3.3. Experimental Data. Experimental data was derived from a variety of resources,
though the authors have attempted to use as few different sources as possible to ensure
regularity of the results. Owing to the large nature of this study, several databases were
used, including Materials Project [25], the ASM Alloy Phase Diagram Database [69], and
the Springer Materials [68] search tool. When multiple sources existed, the most modern
experimental source was used; this choice is not a statement of distrust in older results, but
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Fig. 3.1: Table of transition element binaries, ordered by period then group, with the space
group (SG) of the lowest-temperature stable solid listed. Binaries selected for inclusion in
the V-DM/17 test set are indicated by purple X’s. In each cell the experimentally-observed
mixing behavior of the two alloys is given by color: red indicates a miscibility gap, orange
indicates a random solid solution, green indicates the presence of ordered phases, while blue
indicates that only a sigma (quasi-ordered) phase is formed.

only is meant to serve as an objective and simple selection criteria.
A summary of the experimental techniques utilized for each parameter is given in Ta-

ble 3.1. As the individual measurements used in this study were taken from a wide variety
of sources, a general guideline as to that measurement’s precision is given, rather than a
specific error estimate. For lattice constants and elastic coefficients, the precision is ex-
pressed as ∆i

i × 100% where i is some property, where as for formation enthalpy a more
direct estimate of ∆i can be made.

Some consideration must be given in comparing experimental measurements taken at
finite temperatures, versus DFT simulations performed at zero kelvin. Thermal expansion
effects, as well as zero-point phonon energies, can modify lattice constants, elastic coef-
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Parameter Technique Precision

Lattice Constant Powder Diffraction < 0.1% [23]

Elastic Coeff. Continuous Wave Ultrasonic Inferometry < 0.1% [14]

Formation Enthalpy High Temperature Direct Reaction Calorimetry ±10 meV [27]

Table 3.1: Table of experimental techniques used to acquire the various parameters used
as a standard for the test-set. Precision estimates are taken from general analysis of the
technique or of the instruments used, and not from individual experiments.

ficients, and formation enthalpies. In the case of lattice constants, these corrections are
smaller than 1% of the value and strictly decrease the lattice constant [37, 20], and so have
been neglected. Determining elastic coefficient corrections requires pressure derivatives of
the coefficients, which are lacking in experimental information [37], and so have also been
neglected. Finally, the order of the corrections to the formation enthalpies are on the order
of 10 meV [37, 26], which is within the precision of our experimental technique, and so can
also be neglected.

4. High-Throughput Results. At the present moment, 33,309 single-element con-
vergence calculations and 146,888 production binary calculations have been performed across
8 functionals. These calculations represent full convergence calculations for 25 of the 26 in-
dividual elements (Mn is still in-progress for several functionals), and approximately one
half of the production runs for the binaries. Completion of all calculations, numbering ap-
proximately 300,000 individual VASP runs, is projected for February of 2017. Failures that
could not be automatically recovered from have occurred in less than 1% of simulations,
however, this still represents hundreds of calculations that must be inspected and restarted
by-hand.

4.1. Single-Component Systems. Convergence statistics for the completed elements
can be found in Tables 4.1 and 4.2, showing k -point grids and energy cutoffs resulting in
energy differences ≤ 1 meV, respectively. Convergence simulations were primarily straight-
forward, however, in several cases (e.g., Cu, Zr, Co, Fe), the number of bands used had to
be manually increased after several warnings and errors were encountered. Additionally, for
Y, the GW potentials resulted in non-converging electronic self-consistency loops, and so
were subsequently replaced by the non-GW versions of those potentials. In the majority of
cases, the smallest k -point mesh density tested (corresponding to a length of 30 angstroms
in the fully automatic scheme) already achieved 1 meV convergence, however, in a few cases
(especially in periods 9 and 10), a significantly greater number of k -points had to be used.
For energy cutoffs, 1.5 times the default value provided by VASP usually proved sufficient.
Unsurprisingly, AM05, rTPSS, and M06-L required both the densest k -point meshes and
the highest energy cutoffs; these convergence needs are explained by the finer-grained infor-
mation required to correctly determine subsystem parameters and kinetic energy densities,
respectively.

4.2. Binary Systems. For binary systems, in addition to the difficulties encountered
in single elements, a new challenge was introduced in the form of highly unstable structures.
Since the enumeration technique we employed relied solely on symmetry (to produce unique
structures), some generated structures proved to be unstable. These structures would,
through relaxation, reconfigure into either a new structure or another existing structure.
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Element PZ PW91 BLYP PBE PBESol AM05 rTPSS M06-L

Ag 20×20×20 13×13×13 13×13×13 13×13×13 20×20×20 30×30×30 20×20×20 25×25×25

Au 13×13×13 13×13×13 13×13×13 13×13×13 13×13×13 33×33×33 13×13×13 25×25×25

Co 20×20×11 19×19×10 19×19×10 19×19×10 20×20×11 16×16×9 26×26×14 22×22×12

Cr 16×16×16 15×15×15 15×15×15 15×15×15 16×16×16 29×29×29 16×16×16 28×28×28

Hf 11×11×6 12×12×7 12×12×7 12×12×7 12×12×7 14×14×8 12×12×7 11×11×6

Ir 24×24×24 24×24×24 24×24×24 24×24×24 24×24×24 30×30×30 24×24×24 33×33×33

Mo 16×16×16 15×15×15 15×15×15 16×16×16 16×16×16 27×27×27 16×16×16 22×22×22

Nb 14×14×14 14×14×14 14×14×14 14×14×14 14×14×14 25×25×25 14×14×14 22×22×22

Ni 21×21×21 21×21×21 24×24×24 21×21×21 21×21×21 32×32×32 24×24×24 24×24×24

Os 15×15×8 15×15×8 15×15×8 16×16×9 16×16×9 29×29×16 16×16×9 24×24×13

Pd 23×23×23 23×23×23 19×19×19 23×23×23 23×23×23 30×30×30 23×23×23 28×28×28

Pt 21×21×21 20×20×20 20×20×20 20×20×20 21×21×21 22×22×22 21×21×21 31×31×31

Re 16×16×9 18×18×10 16×16×9 18×18×10 15×15×8 20×20×11 15×15×8 17×17×9

Rh 19×19×19 22×22×22 25×25×25 19×19×19 19×19×19 18×18×18 22×22×22 23×23×23

Ru 16×16×9 16×16×9 18×18×10 16×16×9 16×16×9 25×25×14 16×16×9 29×29×16

Sc 11×11×6 11×11×6 11×11×6 11×11×6 11×11×6 11×11×6 11×11×6 11×11×6

Ta 13×13×13 13×13×13 13×13×13 13×13×13 13×13×13 23×23×23 13×13×13 16×16×16

Tc 17×17×9 17×17×9 17×17×9 13×13×7 17×17×9 22×22×12 13×13×7 19×19×10

Ti 13×13×7 12×12×7 12×12×7 12×12×7 12×12×7 12×12×7 12×12×7 12×12×7

V 16×16×16 15×15×15 16×16×16 15×15×15 16×16×16 22×22×22 15×15×15 20×20×20

W 15×15×15 15×15×15 15×15×15 15×15×15 15×15×15 21×21×21 15×15×15 21×21×21

Y 14×14×8 14×14×8 14×14×8 14×14×8 14×14×8 14×14×8 14×14×8 14×14×8

Zr 12×12×7 11×11×6 11×11×6 11×11×6 11×11×6 14×14×8 11×11×6 14×14×8

Table 4.1: Converged values of the k -point mesh for 23 elements, across 8 functionals.

Relaxations of this sort result in DFT energies that no longer represent the original structure.
This was handled by discarding any offending configurations. Specifically, by measuring
deformations both of the unit cell and of the basis sites from the start to the end of a
relaxation, a “mapping score” was generated. All structures in a binary family were mapped
onto all other structures, and if a configuration mapped better (scored lower) onto any
structure other than its starting structure, the configuration was removed. These relaxations
tended to occur only in certain binaries, though even in these situations no more than 10%
of a binary’s enumerated configurations were discarded.

Although much of the calculation work remains to be finished, some interesting trends
have already begun to emerge. In binaries where no mixed phases were experimentally
observed, but the two components were mutually soluble, the PBE functional usually pre-
dicted a series of shallow (< −10 meV formation enthalpy) stable ordered phases. However,
in cases where not only were there a lack of ordered phases, but the two elements were
experimentally immiscible, no stable ordered were predicted (> 0 meV formation enthalpy).
In binaries known to form one or more ordered phases, most of the configurations calculated
were negative in enthalpy, though usually not as negative as the experimentally observed
ordered phases. Additionally, alloys with two elements with different space groups had a
higher percentage of structures that relaxed onto different structures, than alloys that shared
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Element PZ PW91 BLYP PBE PBESol AM05 rTPSS M06-L

Ag 535 535 535 590 535 535 580 640

Au 470 505 515 495 465 465 515 525

Co 635 635 635 635 635 635 685 700

Cr 575 575 575 575 575 575 655 635

Hf 425 425 425 425 425 425 425 425

Ir 535 535 535 535 535 535 535 535

Mo 525 525 525 525 525 525 525 525

Nb 535 535 535 535 535 535 535 600

Ni 585 585 585 585 595 585 665 710

Os 535 535 535 510 535 535 535 535

Pd 535 570 535 545 535 535 580 605

Pt 515 505 505 560 505 505 560 505

Re 505 505 505 505 475 950 505 585

Rh 525 525 525 525 525 525 580 525

Ru 525 525 525 525 525 525 525 525

Sc 565 565 565 565 565 565 565 565

Ta 435 435 435 435 435 435 435 435

Tc 525 525 525 525 525 525 525 530

Ti 575 575 575 575 575 575 575 575

V 575 575 575 575 575 575 595 605

W 485 485 485 485 485 485 485 485

Y 515 585 515 515 595 515 515 640

Zr 515 515 515 515 515 560 645 625

Table 4.2: Converged values of the energy cutoff, in eV, for 23 elements, across 8 functionals.

a space group (again, in the PBE functional).
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5. Discussion of Design Choices. Our study places a special emphasis on our third
experimental comparison — the formation energy. This parameter plays a critical role in
determining whether a given approximation of DFT (i.e., a specific functional) successfully
captures the relevant physics present in a material. While present functionals (e.g., PBESol
and AM05) can provide excellent results for lattice constants, in materials with active d -
electrons (e.g., TMs) the predicted formation energies can be off by a factor of two or
more. These results are surprising, but can be understood considering the differences in
how formation energy and lattice constant are calculated. DFT, as presently implemented,
provides only a direct measure of formation energies. Specifically, the only density functional
we “know” how to evaluate is one of energy. All other properties, including lattice constant,
are second or higher order extrapolations from the energy, usually found via minimizing the
energy with respect to some perturbation in said property. Therefore, for correct evaluation
of the lattice constant and other secondary properties, given proper convergence settings [42],
the functional only needs to give a good representation of the derivative of the energy near
equilibrium.

a small number of previous studies have taken inspiration from quantum chemistry
and utilized the cohesive energy as an experimental measure of the accuracy of a func-
tional [26, 37]. While attractive due to the ease of calculation as well as the availability
of experimental data for TMs, this approach overlooks important differences between how
quantum chemistry and solid-state physics handle DFT. Most importantly, solid-state, pe-
riodic codes are designed to function best in bulk materials with a well-defined unit cell.
When calculating surfaces, defects, and isolated atoms, the so-called “image problem” ap-
pears if a sufficiently large simulation cell size is not employed, as the isolated feature can
begin to see copies of itself across a periodic boundary [19]. Additionally, most functionals
developed for periodic materials are based on some solution of the uniform electron gas
(PBESol and AM05 being two obvious exceptions), whereas an isolated atom more closely
represents a localized system of mostly vacuum. Finally, in systems with higher electron
densities, i.e., in a solid, where neighboring atoms can contribute electron density, the frac-
tion of the coulomb energy term made up by self-interaction energy is smaller than in a
geometry mostly constructed of vacuum. All of these factors feed into the larger problem
that periodic codes are not designed for isolated atoms, and while accurate results can be
obtained on such systems, such a unique application cannot be considered to be represen-
tative of the overall predictive power and accuracy of periodic codes when applied to true
periodic systems.

6. Conclusions. While DFT has become a powerful, expansive, and insightful tool
in the past decade, caution must be taken in the interpretation of results. Specifically, in
the case of d -electron materials, DFT is known to suffer several difficulties owing to the
mixed localized-and-delocalized electronic behavior present. In light of several high-profile
failures of DFT to describe mixed TM binaries, we have developed a detailed test-set suited
to probe a technique’s accuracy in predicting TM mixture behaviors. Our test set utilizes
binary formation enthalpies, an often-neglected characteristic, to provide a more direct
measure of the quality of approximations made by a given functional. We have applied our
test set to eight of the most commonly used functionals, and compared their performance.
No one functional provides an accurate description of all members of our test set, and the
differences in their failures highlight the wide variety of unique properties present in TM
alloys. The authors urge that forward progress using DFT as a predictive rather than a
descriptive tool must be approached with care and rigor.
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AN EXACT SOLUTION AND SENSITIVITY COMPUTATIONS FOR A
FORCED BURGER’S EQUATION

KOA L. FISHER§ AND ALLEN C. ROBINSON¶

Abstract. Advanced numerical methods and software systems for partial differential equations allow
for both solution approximation and efficient computation of integral quantities of interest and sensitivities
of these quantities of interest with respect to model parameters. It is useful to test the accuracy and
correctness of such solution methods for nonlinear hyperbolic systems that may form shocks. To this end,
an exact analytic solution to a forced Burger’s equation is developed using the methods of characteristics,
quantities of interest are developed, and the values and sensitivities are compared with output from the
Drekar code.

1. Introduction. Drekar is research code framework for developing and evaluating
numerical discretizations of multiphysics partial differential equation operators using im-
plicit and explicit operators and embedded adjoints for computing sensitivities to equation
parameters [1, 2]. We are interested in verifying the Drekar methodology for solving nonlin-
ear hyperbolic problems with parameters for both linear and nonlinear quantities of interest
over domains. The equation that we use for a test problem is the forced Burger’s equation,

∂u

∂t
+ u

∂u

∂x
= s. (1.1)

for u(x, t; s). We also assume the following conservative form,

∂u

∂t
+

∂

∂x

(
u2

2

)
= s. (1.2)

We solve this equation for a simple initial condition using the method of characteristics with
shock fitting. We then analyze five different quantities of interest representing different levels
of challenge for the numerical method. The different quantities of interest are integrals of
u and u2 over a two-dimensional domain of space-time. One of the domains crosses two
different characteristic regions, one crosses a shock and the three remaining domains are
contained completely within a single characteristic region. Although the solution is exact
and the quantities of interest can be represented exactly, we evaluate the solution and
quantities of interest numerically. Finally, we compare the computed values and observed
rates of convergence for each of the quantities of interest.

2. An Exact Solution of the Forced Burger’s Equation.

2.1. Method of Characteristics. Integration along characteristic curves allows for
development of exact solutions of one dimensional nonlinear hyperbolic conservation laws.
A good reference for how to solve nonlinear hyperbolic equations using the method of char-
acteristics is the book by Whitham [3]. Equation 1.1 can be rewritten along characteristics
as

du
dt

= s on
dx
dt

= u (2.1)

with solution

u = st+ f(ξ), (2.2)

§Sandia National Laboratories, kfishe@sandia.gov
¶Sandia National Laboratories, acrobin@sandia.gov
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along the characteristics

x =
1
2
st2 + f(ξ)t+ ξ (2.3)

parametrized by the initial location, ξ, at time t = 0. We chose initial conditions that
specify f(ξ) as

f(ξ) =


0 if ξ < −1,
(1 + ξ) if − 1 ≤ ξ < 0,
(1− ξ) if 0 ≤ ξ < 1,
0 if 1 ≤ ξ

. (2.4)

This allows x to vary in different regions corresponding to initial values, ξ, as t changes. It
is in these four characteristic regions that we are interested in looking at the quantities of
interest. In Figure 2.1 we plot the different curves of x as t changes for varying values of s
and ξ.

Fig. 2.1: Characteristics curves before shock fitting.

2.2. The Shock Curve. Where the characteristics overlap, we need to fit a shock. We
want to compute this shock curve analytically so that we will be able to compare the exact
solution to verify the solutions computed using Drekar. To find an equation for the shock
curve, we use the conservative form Equation 1.2 to develop the shock jump conditions:
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− ẋs[u] + [
1
2
u2] = 0, (2.5)

which means

− ẋs(u+ − u−) + (
1
2
u+2 − 1

2
u−

2) = 0. (2.6)

The ”plus” indicates the right hand side of the shock and the ”minus” indicates the left
hand side. The shock jump equation simplifies to

− ẋs +
1
2

(u+ + u−) = 0. (2.7)

All of the characteristics in 0 < ξ < 1 break at t = 1. Thus the shock will be composed
of (left) characteristics from the −1 < ξ < 0 region interacting with (right) characteristics
from the ξ > 1 region. The shock starts at t = 1, x = s

2 + 1. We have the characteristic
equations for the shock from the left and right

xs =
st2

2
+ (1 + ξ−)t+ ξ−; u− = st+ (1 + ξ−) (2.8)

and

xs =
st2

2
+ ξ+; u+ = st. (2.9)

Substituting u+ and u− into the shock jump equation and solving for ξ−, we get

ẋs =
1
2

(2st+ (1 + ξ−)) =
1
2

(2st+ (1 +
xs − st2

2 − t
1 + t

)). (2.10)

Moving the xs term to the other side, we end up with a differential equation,

ẋs −
1

2(1 + t)
xs = st+

1
2
− st2

4(1 + t)
− t

2(t+ 1)
=

3s
4

(1 + t)− s

2
+

2− s
4

1
1 + t

(2.11)

Then we find an integrating factor, (1 + t)−
1
2 , for this equation and obtain the solution

xs =
1
2
st2 − 1 + c(1 + t)

1
2 . (2.12)

The initial conditions, t = 1, x = s
2 + 1, imply that the appropriate particular solution is

xs =
1
2
st2 − 1 +

√
2(1 + t)

1
2 . (2.13)

The characteristic curves with the fitted shock are shown in Figure 2.2 for various values of
s.
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Fig. 2.2: Characteristic curves after shock fitting.

3. Quantities of Interest. We are interested in computing scalar quantities of inter-
est, Q(s; g(u)) defined by space-time integrals of g(u) = u and the nonlinear g(u) = u2 over
specified domains of interest in order to fully test the Drekar methodology. Both smooth
single region domains and domains that cross characteristic regions and cross the shock
should be included. We have not included a domain that includes the shock breaking point
in space-time, although this could be done. We choose specific rectangular domains so that
the numerical integration methodology of the exact solution for all values of s need not be
specialized.

3.1. Integration Methodology. Numerical computation of the quantities of interest
is performed using a two-dimensional nested trapezoidal rule methodology. There are five
different domains of interest. The first domain crosses from one region to another where the
characteristic curves are different. The second domain crosses the shock. The third, fourth,
and fifth domains are completely contained within one characteristic region. We only look
at three domains fully contained within a single characteristic region because the first and
the fourth characteristic regions have exactly the same properties.
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Fig. 3.1: The shock curve and characteristic curves with boxed off regions of interest.

We have constructed the domains so that throughout the range of s considered, we only need
to split the domains into a maximum of two different sub-domains for integration purposes.

Fig. 3.2: The box on left shows how a domain may be split in two by either a bounding
characteristic or a shock, t(x, s). The box on the right shows how the two-dimensional
integration is done in the t-direction and then the x-direction.

We numerically evaluate a line integral in the t direction using the trapezoidal rule
and then sum the results in the x direction again using the trapezoidal rule. For the first
two domains of integration it is necessary to divide the domain into two sub-domains. The
first domain is split by a bounding characteristics and the second is split by the shock. In
order to find the t(x, s) integration bound we can use the exact solution for the bounding
characteristic and Newton’s method for the shock.

3.2. Exact Solution for Qi(s;u). We now present the representation of the funda-
mental quantities of interest over the different domains of interest.

I. The first domain we want to integrate over is t ∈ [0, 1
2 ], x ∈ [0, 1

2 ],
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QI(s;u) =
∫ 1

2

0

∫ 1
2

0

udxdt =
∫ 1

2

0

∫ 1
2

0

st+ f(ξ) dxdt =

∫ 1
2

0

(∫ t(x,s)

0

st+ (1− ξ) dt+
∫ 1

2

t(x,s)

st+ (1 + ξ) dt

)
dx =

∫ 1
2

0

(∫ t(x,s)

0

st+ (1−
x− 1

2st
2 − t

(1− t)
) dt+

∫ 1
2

t(x,s)

st+ (1 +
x− 1

2st
2 − t

(1 + t)
) dt

)
dx. (3.1)

This domain is split by two characteristic regions. The bounding characteristic curve can
be obtained analytically as

t(x, s) =
2x

1 +
√

1 + 2sx
(3.2)

II. The next domain is on t ∈ [0, 2], x ∈ [ 5
4 ,

11
8 ],

QII(s;u) =
∫ 11

8

5
4

∫ 2

0

udtdx =
∫ 11

8

5
4

∫ 2

0

st+ f(ξ) dtdx =

∫ 11
8

5
4

(∫ t(x,s)

0

stdt+
∫ 2

t(x,s)

st+ (1 + ξ) dt

)
dx =

∫ 11
8

5
4

(∫ t(x,s)

0

stdt+
∫ 2

t(x,s)

st+ (1 +
x− 1

2st
2 − t

(1 + t)
) dt

)
dx. (3.3)

This domain was chosen because it crosses the shock curve defined by Equation 2.13.
The bounding t(x, s) curve defined implicitly by Equation 2.13 is evaluated using Newton’s
method.

III. Then we have t ∈ [0, 1
4 ], x ∈ [− 1

2 ,−
1
4 ],

QIII(s;u) =
∫ 1

4

0

∫ − 1
4

− 1
2

udxdt =
∫ 1

4

0

∫ − 1
4

− 1
2

st+ f(ξ) dxdt =

∫ 1
4

0

∫ − 1
4

− 1
2

st+ (1 +
x− 1

2st
2 − t

(1 + t)
) dxdt. (3.4)

IV. Followed by t ∈ [0, 1
4 ], x ∈ [ 1

2 ,
3
4 ],

QIV (s;u) =
∫ 3

4

1
2

∫ 1
4

0

udtdx =
∫ 3

4

1
2

∫ 1
4

0

st+ f(ξ) dtdx =
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4

1
2

∫ 1
4

0

st+ (1−
x− 1

2st
2 − t

(1− t)
) dtdx. (3.5)

V. Finally t ∈ [0, 1
2 ], x ∈ [2, 3],

QV (s;u) =
∫ 3

2

∫ 1
2

0

udtdx =
∫ 3

2

∫ 1
2

0

stdtdx =
s

8
. (3.6)

The domains III, IV, and V were chosen because they are contained completely within
characteristic regions with distinct properties. The solution over the last three domains
is smoother and we might expect rates of convergence for the quantities of interest to
be higher. Similar integrals can be written for Qi(s;u2) in an obvious way. Using the
trapezoidal integration method described above we computed the domain integrals of u and
u2. These results are shown in Tables 3.1 and 3.3.

3.3. Numerical Results for Qi(s;u) and Qi(s;u2). We implemented this problem
using Drekar and computed Qi(s;u) and Qi(s;u2) numerically for the five chosen domains.
The results are shown along with the computed rate of convergence, in parentheses, with
respect to uniform refinement in space and time. Convergence rates are computed from
successive errors and are only computed if both errors are larger than 10−6. If this is not
the case, then a (−) is shown. Negative convergence rates imply that the results are not yet
in the asymptotic region. We only integrate to the end of the time interval specified by the
domain specific quantity of interest because Drekar does not support multiple quantities
of interest in a given simulation. The x-domain is [−4., 4.] with 100, 200, 400, then 800
intervals in the x-direction and in time we decrease our time step by half giving us time
steps of 1.25e-2, 6.25e-3, 3.125e-3, and 1.5625e-3, corresponding to uniform refinement in
space and time. The forward solution was solved using an implicit backward difference time
integrator (BDF2) and the adjoint solution described in the next section was solved using
a BDF1 time integrator with a different time step. A stabilized finite element methodology
with entropy shock capturing was utilized for the forward problem.

Table 3.2 gives values Qi(s;u) for four refinement levels along with computed conver-
gence rates relative to the exact solution shown in Table 3.1.

Exact Qi(s;u)

I II III IV V

s

0 0.210624 0.033201 0.034866 0.026970 0.000000

0.1 0.216675 0.080950 0.035593 0.027832 0.012500

0.2 0.222693 0.118001 0.036319 0.028693 0.025000

0.3 0.228681 0.150004 0.037045 0.029555 0.037500

Table 3.1: Exact solution for Qi(s;u) for different domains and values of s

Qi(s;u) 100

I II III IV V

s

0.0 0.216786 0.034632 0.038707 0.024779 0.000000

0.1 0.223200 0.079608 0.039520 0.025607 0.012500
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0.2 0.229578 0.114574 0.040333 0.026435 0.025000

0.3 0.235923 0.145112 0.041146 0.027264 0.037500

Qi(s;u) 200

I II III IV V

s

0.0 0.210357 (4.53) 0.030028 (-1.15) 0.033180 (1.19) 0.026197 (1.50) 0.000000 (-)

0.1 0.216433 (4.75) 0.076459 (-1.74) 0.033877 (1.20) 0.027025 (1.46) 0.012500 (-)

0.2 0.222475 (4.98) 0.112313 (-0.73) 0.034574 (1.20) 0.027852 (1.42) 0.025000 (-)

0.3 0.228484 (5.20) 0.143177 (-0.48) 0.035272 (1.21) 0.028680 (1.39) 0.037500 (-)

Qi(s;u) 400

I II III IV V

s

0.0 0.210491 (1.01) 0.032343 (1.89) 0.034852 (6.89) 0.026952 (5.38) -0.000000 (-)

0.1 0.216554 (0.99) 0.078047 (0.63) 0.035578 (6.92) 0.027813 (5.46) 0.012500 (-)

0.2 0.222582 (0.97) 0.113543 (0.35) 0.036305 (6.95) 0.028675 (5.53) 0.025000 (-)

0.3 0.228578 (0.93) 0.144226 (0.24) 0.037031 (6.97) 0.029537 (5.60) 0.037500 (-)

Qi(s;u) 800

I II III IV V

s

0.0 0.210561 (1.06) 0.033150 (4.08) 0.034860 (1.18) 0.026960 (0.83) 0.000000 (-)

0.1 0.216616 (1.04) 0.080919 (6.57) 0.035586 (1.19) 0.027822 (0.83) 0.012500 (-)

0.2 0.222637 (0.99) 0.117975 (7.44) 0.036313 (1.20) 0.028683 (0.83) 0.025000 (-)

0.3 0.228628 (0.95) 0.149981 (7.98) 0.037039 (1.21) 0.029545 (0.84) 0.037500 (-)

Table 3.2: Drekar solution values ofQi(s;u) (and associated convergence rates) for different domains
and values of s for a sequence of meshes.

Similarly, Table 3.4 gives values of Qi(s;u2) for four refinement levels along with com-
puted convergence rates relative to the exact solution shown in Table 3.3.

Exact Qi(s;u2)

I II III IV V

s

0 0.180556 0.027127 0.019792 0.012153 0.000000

0.1 0.191128 0.067335 0.020584 0.012950 0.000417

0.2 0.202014 0.110877 0.021398 0.013780 0.001667

0.3 0.213212 0.157752 0.022235 0.014643 0.003750

Table 3.3: Exact solution for Qi(s;u2) for different domains and values of s
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Qi(s;u
2) 100

I II III IV V

s

0.0 0.184168 0.024256 0.021853 0.010665 0.000000

0.1 0.195293 0.063656 0.022732 0.011399 0.000417

0.2 0.206762 0.105418 0.023635 0.012164 0.001667

0.3 0.218570 0.150553 0.024563 0.012960 0.003750

Qi(s;u
2) 200

I II III IV V

s

0.0 0.180070 (2.89) 0.022430 (-0.71) 0.018653 (0.86) 0.011895 (2.53) 0.000000 (-)

0.1 0.190675 (3.20) 0.061685 (-0.62) 0.019407 (0.87) 0.012669 (2.46) 0.000417 (-)

0.2 0.201596 (3.51) 0.103845 (-0.37) 0.020182 (0.88) 0.013475 (2.40) 0.001667 (-)

0.3 0.212829 (3.81) 0.149071 (-0.27) 0.020978 (0.89) 0.014312 (2.35) 0.003750 (-)

Qi(s;u
2) 400

I II III IV V

s

0.0 0.180322 (1.06) 0.025256 (1.33) 0.019776 (6.17) 0.012135 (3.87) 0.000000 (-)

0.1 0.190909 (1.05) 0.064085 (0.80) 0.020568 (6.19) 0.012932 (3.95) 0.000417 (-)

0.2 0.201808 (1.02) 0.105975 (0.52) 0.021382 (6.20) 0.013762 (4.03) 0.001667 (-)

0.3 0.213018 (0.98) 0.151016 (0.37) 0.022218 (6.22) 0.014624 (4.10) 0.003750 (-)

Qi(s;u
2) 800

I II III IV V

s

0.0 0.180445 (1.08) 0.026348 (1.26) 0.019785 (1.22) 0.012143 (0.89) 0.000000 (-)

0.1 0.191022 (1.05) 0.066701 (2.36) 0.020577 (1.23) 0.012940 (0.89) 0.000417 (-)

0.2 0.201911 (1.00) 0.110310 (3.11) 0.021391 (1.23) 0.013770 (0.90) 0.001667 (-)

0.3 0.213111 (0.94) 0.157223 (3.67) 0.022228 (1.24) 0.014633 (0.90) 0.003750 (-)

Table 3.4: Drekar solution values of Qi(s;u
2) (and associated convergence rates) for different do-

mains and values of s for a sequence of meshes.

For additional clarity we show a graph of the domain II errors in Figure 3.3. This gives
a better visual idea of how the domain II quantities of interest are converging.

3.4. Exact Solution for Q′i(s;u) and Q′i(s;u
2). We are also interested in the s

derivative of the quantities of interest. For those domains that cross between characteristic
regions or across a shock curve we can use Leibniz’ integral rule to take the derivative of the
integrals with respect to s. With the bounds for integration being a and b in the x direction,
c and d in the t direction we have,
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Fig. 3.3: Error plots for QII(s;u) and QII(s;u2)

d
ds

∫ b

a

∫ d

c

udtdx =
∫ b

a

∫ t(x,s)

c

∂ui
∂s

dtdx+
∫ b

a

ui(x, t(x, s); s)
∂t

∂s
(x, s)dx

+
∫ b

a

∫ d

t(x,s)

∂uj
∂s

dtdx−
∫ b

a

uj(x, t(x, s); s)
∂t

∂s
(x, s)dx (3.7)
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Fig. 3.4: Error plots for Q′II(s;u) and Q′II(s;u
2)

where t(x, s) is a representation of the separating curve and the subscripts i and j refer to
the solution in the lower and upper time regions, respectively, in the x− t plane. All 4 terms
must be calculated for the shock curve of domain II, but the boundary terms need not be
calculated in domain I because the solution u is continuous and these terms cancel.

For those domains that do not cross a separating curve

d
ds

∫ b

a

∫ d

c

udtdx =
∫ b

a

∫ d

c

∂u

∂s
dtdx (3.8)
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The corresponding integrals for u2 are

d
ds

∫ b

a

∫ d

c

u2 dtdx =
∫ b

a

∫ t(x,s)

c

2ui
∂ui
∂s

dtdx+
∫ b

a

u2
i (x, t(x, s); s)

∂t

∂s
(x, s)dx

+
∫ b

a

∫ d

t(x,s)

2uj
∂uj
∂s

dtdx−
∫ b

a

u2
j (x, t(x, s); s)

∂t

∂s
(x, s))dx (3.9)

for domains I and II, and

d
ds

∫ b

a

∫ d

c

udtdx =
∫ b

a

∫ d

c

2u
∂u

∂s
dtdx (3.10)

for the other domains. Tables 3.5 and 3.7 gives the results of the computation of these
quantities of interest from the exact solution.

3.5. Numerical Results for Q′i(s;u) and Q′i(s;u
2). In addition to the forward so-

lution, we computed Q′(s;u) and Q′i(s;u
2) numerically using the adjoint methodology in

Drekar. The computed results for the five quantities of interest are shown along with the
convergence rates in parentheses with respect to uniform refinement in space and time.

Table 3.6 gives values Q′i(s;u) for four refinement levels along with computed conver-
gence rates relative to the exact solution shown in Table 3.5.

Exact Q′i(s;u)

I II III IV V

s

0 0.060696 0.577330 0.007263 0.008617 0.125000

0.1 0.060338 0.408644 0.007263 0.008617 0.125000

0.2 0.060023 0.340288 0.007263 0.008617 0.125000

0.3 0.059743 0.302975 0.007263 0.008617 0.125000

Table 3.5: Exact solution for Q′i(s;u) for different domains and values of s

Q′i(s;u) 100

I II III IV V

s

0.0 0.064672 0.510307 0.008092 0.008335 0.125000

0.1 0.064335 0.394634 0.008091 0.008337 0.125000

0.2 0.064009 0.329528 0.008091 0.008337 0.125000

0.3 0.063701 0.293038 0.008091 0.008337 0.125000

Q′i(s;u) 200

I II III IV V

s

0.0 0.062550 (1.10) 0.554827 (1.57) 0.007294 (4.77) 0.008748 (1.10) 0.128145 (-)

0.1 0.062196 (1.11) 0.400721 (0.82) 0.007295 (4.71) 0.008751 (1.06) 0.128145 (-)

0.2 0.061889 (1.09) 0.331911 (0.36) 0.007295 (4.71) 0.008751 (1.06) 0.128145 (-)

0.3 0.061602 (1.09) 0.294899 (0.30) 0.007295 (4.71) 0.008751 (1.06) 0.128145 (-)
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Q′i(s;u) 400

I II III IV V

s

0.0 0.061630 (0.99) 0.554581 (-0.02) 0.007429 (-2.45) 0.008861 (-0.90) 0.126567 (1.00)

0.1 0.061275 (0.99) 0.393244 (-0.96) 0.007431 (-2.40) 0.008864 (-0.88) 0.126567 (1.00)

0.2 0.060971 (0.98) 0.327746 (-0.58) 0.007431 (-2.40) 0.008864 (-0.88) 0.126567 (1.00)

0.3 0.060688 (0.98) 0.292244 (-0.41) 0.007431 (-2.40) 0.008864 (-0.88) 0.126567 (1.00)

Q′i(s;u) 800

I II III IV V

s

0.0 0.060823 (2.87) 0.578630 (4.13) 0.007258 (4.93) 0.008627 (4.48) 0.125000 (-)

0.1 0.060481 (2.71) 0.409201 (4.79) 0.007259 (5.29) 0.008626 (4.69) 0.125000 (-)

0.2 0.060177 (2.62) 0.340735 (4.81) 0.007259 (5.29) 0.008626 (4.69) 0.125000 (-)

0.3 0.059897 (2.61) 0.303628 (4.04) 0.007259 (5.29) 0.008626 (4.69) 0.125000 (-)

Table 3.6: Drekar solution values ofQ′i(s;u) (and associated convergence rates) for different domains
and values of s for a sequence of meshes.

Tables 3.8 gives values Q′i(s;u
2) for four refinement levels along with computed conver-

gence rates relative to the exact solution shown in Table 3.7.

Exact Q′i(s;u
2)

I II III IV V

s

0 0.104167 0.385417 0.007812 0.007813 0.000000

0.1 0.107292 0.418750 0.008034 0.008138 0.008333

0.2 0.110417 0.452083 0.008255 0.008464 0.016667

0.3 0.113542 0.485417 0.008477 0.008789 0.025000

Table 3.7: Exact solution for Q′i(s;u
2) for different domains and values of s

Q′i(s;u
2) 100

I II III IV V

s

0.0 0.110062 0.356649 0.008670 0.007171 0.000000

0.1 0.113557 0.429323 0.008907 0.007474 0.008176

0.2 0.116984 0.452160 0.009145 0.007777 0.016352

0.3 0.120368 0.478082 0.009382 0.008079 0.024527

Q′i(s;u
2) 200
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I II III IV V

s

0.0 0.107203 (0.96) 0.382922 (3.53) 0.007770 (4.32) 0.008034 (1.53) 0.000000 (-)

0.1 0.110489 (0.97) 0.421167 (2.13) 0.007994 (4.46) 0.008370 (1.51) 0.008569 (-0.58)

0.2 0.113782 (0.96) 0.446114 (-6.28) 0.008218 (4.57) 0.008704 (1.52) 0.017139 (-0.58)

0.3 0.117037 (0.97) 0.474980 (-0.51) 0.008441 (4.68) 0.009037 (1.52) 0.025708 (-0.58)

Q′i(s;u
2) 400

I II III IV V

s

0.0 0.105710 (0.98) 0.387738 (0.10) 0.007984 (-2.00) 0.008034 (0.00) 0.000000 (-)

0.1 0.108917 (0.98) 0.411051 (-1.67) 0.008213 (-2.17) 0.008373 (-0.01) 0.008451 (1.01)

0.2 0.112139 (0.97) 0.439359 (-1.09) 0.008440 (-2.30) 0.008709 (-0.03) 0.016902 (1.01)

0.3 0.115331 (0.97) 0.469501 (-0.61) 0.008667 (-2.42) 0.009045 (-0.05) 0.025353 (1.01)

Q′i(s;u
2) 800

I II III IV V

s

0.0 0.104380 (2.86) 0.389547 (-0.83) 0.007810 (6.19) 0.007812 (-) 0.000000 (-)

0.1 0.107541 (2.70) 0.417899 (3.18) 0.008032 (6.27) 0.008134 (5.88) 0.008314 (2.59)

0.2 0.110699 (2.61) 0.448915 (2.01) 0.008252 (5.75) 0.008458 (5.56) 0.016628 (2.59)

0.3 0.113833 (2.62) 0.481636 (2.07) 0.008472 (5.39) 0.008783 (5.31) 0.024941 (2.59)

Table 3.8: Drekar solution values of Q′i(s;u
2) (and associated convergence rates) for different do-

mains and values of s for a sequence of meshes.

We show a graph of domain II derivative errors in Figure 3.4. The nonlinear quan-
tity of interest, Q′II(s;u

2) is not yet exhibiting a clear asymptotic convergence response.
Additional investigation is needed to study the convergence of the adjoint based derivative
computations.

4. Conclusions. We have demonstrated an exact solution to a forced Burger’s equa-
tion and computed numerically integral quantities of interest of the exact solution, u, and
the nonlinear, u2, over space-time domains and compared these results with a numerical
solution using Drekar. Derivatives of the quantities of interest with respect to the forc-
ing parameter, s, are also computed from the exact solution and compared with adjoint
computations of these derivatives in Drekar. Five different domains were analyzed. Once
the discretization is fine enough to approach the asymptotic region we generally observe at
least first order convergence for all domains. Domain V converges so rapidly to the exact
answer that rates easily become uncomputable. The results obtained show promise that the
combined shock-capturing and adjoint derivative capability found in Drekar can effectively
compute linear and nonlinear integral domain quantities of interest and sensitivities. How-
ever, additional work is still needed to investigate the quality of the Drekar solution and the
associated adjoint derivative solution and to understand the precise nature of the numerical
convergence rates for this verification problem.
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A COMPARATIVE STUDY OF SIMPLIFIED MODELS FOR ION
CROWDING AND CORRELATION EFFECTS IN ELECTROLYTE

SOLUTIONS

BRIAN D. HONG∗ AND MAURO PEREGO†

Abstract. We study phenomenological models for ion crowding and correlations in the context of ionic
fluids. The reduced models are compared to classical density functional theory to examine their ability
to model the layer of ions near a charged surface. We find that for a 1:1 electrolyte, the modified Poisson
Boltzmann model provides an advantage over the standard Poisson Boltzmann model by describing crowding
effects which are not taken into account in the standard model. However, in the same case, it is unclear that
the addition of a biharmonic operator to model ion correlations yields any improvement. We also study the
effects of increasing ion diameter on the mobility of a colloid in a nanochannel. This study suggests that
increases in ion diameter tend to, in general, increase the mobility of the colloid.

1. Introduction. The structure of an ionic fluid near a charged surface can be modeled
at the nanoscale by a variety of representations. One more accurate method for describing
the system is classical density functional theory (cDFT). This method utilizes an ab-initio
approach combined with additional assumptions, which make cDFT computationally feasi-
ble for relatively small problems. On the opposite end of the spectrum, the Poisson Boltz-
mann representation of the electrostatic potential assumes that all ions are point charges
and therefore greatly reduces the computational cost. However, particularly at high con-
centrations, assuming the ions are point charges neglects important ion-ion interactions. In
order to reintroduce these effects with relatively little additional computational cost, phe-
nomenological models have been proposed. Here we review two such models: the modified
Poisson Boltzmann (MPB) model [2] for ion crowding and a Biharmonic version of the MPB
model [9] which accounts for ion-ion correlations.

In the first part of the paper we introduce these models and briefly discuss their origin.
Subsequently, we discuss their numerical implementation. Next, in order to assess the
physical fidelity of the models, we present a comparison of the models with increasing ion
size and correlation length. In the last part, we apply the phenomenological model to
measure the mobility of a particle in a nanochannel.

2. Physical Models. In all models considered in this report the electric potential ψ
is governed by the Poisson equation:

−∇ · (ε0ε∇ψ) = q, in Ω. (2.1)

In this paper the domain Ω is typically taken to be a channel in R2 or R3 that is periodic
in the z-direction. Here ε0 is the permittivity of free space, ε is the relative permittivity of
the medium, and q is the free charge density of the fluid. If we consider a fluid medium
with α = 0, 1, ...,m charged ionic species dissolved within it, the free charge density is the
sum of the densities of the individual species.

q =
∑
α

ezαρα (2.2)

In this expression, zα is the valence, ρα is the number density, and e is the fundamental
charge.

∗University of Arizona, Program in Applied Mathematics, bhong@math.arizona.edu
†Sandia National Laboratories, mperego@sandia.gov
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2.1. Poisson Boltzmann. The fundamental simplified model for the electric potential
is the Poisson Boltzmann (PB) model. In this model the individual ions are assumed to be
non-interacting point charges, implying that no crowding or correlation effects between the
ions are considered. The name of the PB model is derived from the assumption that the ion
density of the α species (in an assumed equilibrium) is given by the Boltzmann distribution.

ρα = ρbα exp
(
−ezα
kT

ψ
)

(2.3)

where ρbα is the density of the α species in the bulk, k is the Boltzmann constant, and T
is the temperature of the medium. Combining (2.1), (2.2), and (2.3) results in the classical
PB equation.

−∇ · (ε0ε∇ψ) =
∑
α

ezαρ
b
α exp

(
−ezα
kT

ψ
)

(2.4)

The PB equation is typically paired with a Neumann boundary condition for a fixed surface
charge density qs.

− εε0∇ψ · n = qs, on ∂Ω (2.5)

where n is the surface normal to ∂Ω.

2.2. Modified Poisson Boltzmann. The modified Poisson Boltzmann (MPB) model
uses a phenomenological modification of the Poisson Boltzmann equation that takes into
account the finite sizes of the ions. Intuitively this can be thought of as including crowding,
or equivalently, steric effects of the ions. This model is derived in some detail in [2]. The
basic idea is that each of the ions, assumed to be of equal size, is given a diameter a. Then,
the energy associated with this system is adjusted so that crowding (i.e., high local densities)
will increase the energy. The result is that in areas where the density would be unphysically
large (for example near a charged surface) the distribution will instead saturate and spread
out into the medium. The density of the α ionic species for arbitrary valences is given in
[3].

ρα =
ρbα exp(− ezαkT ψ)

1 + a3
∑
j ρ

b
j

(
exp(− ezjkT ψ)− 1

) (2.6)

It is useful to note that as the ion size diminishes (a → 0), the saturation factor in the
denominator disappears and the density is reduces to the Boltzmann distribution (2.3).
Combining this with (2.1) and (2.2) yields the MPB equation.

−∇ · (ε0ε∇ψ) =
∑
α

ezα

[
ρbα exp(− ezαkT ψ)

1 + a3
∑
j ρ

b
j

(
exp(− ezjkT ψ)− 1

)] (2.7)

It is possible to allow the ion sizes to vary between species a = aα. However, no analytic
form exists for the density (2.6) in this case [3]. In cases where the ions differ substantially in
size, (2.6) is unsuitable because it will ignore the ability of the smaller ions to pack between
the larger ions [6]. However, the details of such a consideration are outside the scope of this
report.

2.3. Biharmonic Modified Poisson Boltzmann. A further modification to the PB
equation that accounts for ion-ion correlations is presented in [9]. The result is a modified
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Laplace equation that includes a biharmonic operator. The resulting model assumes a
spatially invariant dielectric constant, and is given by

ε0ε(l2c∇2 − 1)∇2ψ = q, in Ω. (2.8)

Here lc is a phenomenological constant that describes the length scale for the correlation
effects. This is usually taken close to the Bjerrum length lB = e2/(4πkTεε0). For details
concerning the physics and derivation we refer the reader to [9]. The model includes the
“crowding” effects described by (2.6). For spatially invariant ε the result is a biharmonic
modified Poisson Boltzmann equation (BMPB).

ε0ε(l2c∇2 − 1)∇2ψ =
∑
α

ezα

[
ρbα exp(− ezαkT ψ)

1 + a3
∑
j ρ

b
j

(
exp(− ezjkT ψ)− 1

)] (2.9)

This equation is coupled with the original surface charge density boundary condition for the
Poisson equation (2.5) and the natural boundary condition

−∇(∇2ψ) · n = 0 on ∂Ω. (2.10)

2.4. Classical Density Functional Theory. To provide a basis for evaluating the
phenomenological models described above, we will use classical density functional theory
(cDFT). In particular, we will use fundamental measure theory (FMT) for hard spheres.
This technique utilizes finite ion sizes and provides fundamental descriptions for the cor-
relation effects of the ions resulting from the Kohn-Sham equations. For details on this
approach, we refer the reader to [10] and [7].

2.5. Stokes equations. We require a fluid model for the numerical experiments that
compute colloid velocity in a microchannel. We choose the low Reynolds number Stokes
limit to the Navier-Stokes equations. The Stokes equations with an added forcing term from
the electric field are

−η∇2u +∇P = qE, (2.11)
∇ · u = 0 in Ω. (2.12)

Where u is the fluid velocity, P is the pressure, q is the charge density given by the
previous models, η is the dynamic viscosity, and E is the total electric field. The electric
field comprises two components: a static driving field Eapp and contributions from the local
charges −∇ψ.

E = −∇ψ + Eapp (2.13)

In this report we focus on a one way coupling between the fluid and charge models in which
the fluid density does not influence the equation for ψ. Two way coupling will be considered
in future work.

3. Numerical Implementation and Verification. All of the models are imple-
mented using the finite element method (FEM). The PB-based models are implemented in
the front-end “Drekar” which is part of Sandia’s numerical library Trilinos [4]. We use a
previous implementation of cDFT for hard spheres, Tramonto [1], which also utilizes the
Trilinos library. The Navier-Stokes equations were previously implemented in Drekar.

The implementation of the PB (2.4) and MPB (2.7) systems are straightforward because
they only require standard C0 finite element spaces. To implement the BMPB system (2.9)
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we introduce an auxiliary variable w which transforms this fourth order problem into an
equivalent system of two second order equations. −l2c∇2w + w = q

−εε0∇2ψ = w
(3.1)

with the corresponding boundary conditions (2.10) and (2.5),{
∂nw = 0

−εε0∂nψ = qs
on ∂Ω (3.2)

where ∂n is the normal derivative (i.e. ∂nw = ∇w ·n). This system can be discretized using
C0 elements.

3.1. FEM Convergence Verification. To establish correct implementation of the
models, we fabricate analytical solutions and forcing functions for the Laplace operator
(2.1) and the biharmonic-Laplace operator (2.8). For example, for the biharmonic-Laplace
operator we use a spherically symmetric solution

ψ = exp
[
−2

3
(x2 + y2 + z2)

]
, w = −4

9
ε(4x2 + 4y2 + 4z2 − 9)ψ (3.3)

and a standard trigonometric solution

ψ = sin(πx) sin(πy) cos(πz), w = 3π2εψ (3.4)

with appropriate domains and boundary conditions. Fig. 3.1 shows L2 convergence data
for (3.1). Similar results were obtained for the other models.
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Fig. 3.1: L2 norm convergence of the FEM solution of (3.1) to the analytical trig solution
(3.4). N is the number of points in each coordinate direction.

4. Electric potential comparison. In this section we compare the phenomenological
models for electron correlations discussed in sections 2.2 and 2.3 with cDFT (sec. 2.4), which
we treat here as the relative “golden standard.” We use the typical geometry for such a
comparison: a single infinite charged plate at x = x0. This implies that the equations for
the potential can be reduced, by symmetry, to equations in x only. The implementations
are fully 3D, but we use the reduced equations here to demonstrate the differences between
the models more directly.
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Bulk Density (ρbα) 6.02 × 1026 ions/m3

Relative permittivity (ε) 78.5

Ionic charges (zα) +1,−1

Temperature (T ) 298 K

Boundary surface charge (qs) −0.3 C/m2

Fig. 4.1: Parameters used for simulations in sec. 4.

4.1. Effects of adjusting ion length scales. In the baseline comparison, we expect
all three models to reduce to the PB solution. We compute solutions for a 1:1 electrolyte
(fig. 4.1) with densities ρ+ and ρ−. The electrostatic potential is scaled by β = e/(kT ).
Choosing a = 0 in the steric model (2.7) or a, lc = 0 in the biharmonic model (2.9) reduces
the respective equations to the PB model (2.4). In light of this we only include a single
representation for all three equations in fig. 4.2. It can also be shown that in the limit as
the diameter of the hard spheres → 0, the cDFT model also reduces to the PB model. In
Tramonto the cDFT model is implemented using non-dimensionalized units, so we adjusted
the length scales to match our dimensional PB equations (fig. 4.2).
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Fig. 4.2: PB (--) compared to the small ion limit in cDFT (◦) for an infinite charged sheet
at x = 0.

Figure 4.3 demonstrates the effects of varying the parameters that determine length
scale of the ion interactions within cDFT and the phenomenological models. The first row
shows the characteristic behavior of the charged layer in cDFT as the ion size is increased:
the density of ions near the charged surface is reduced, and for a sufficiently large ion size
alternating layers are formed. The increased width of the charged layer also increases the
potential (βψ) since the potential is not immediately balanced by the large surface charge
density seen in the PB case.

The results for the MPB case (second row) are similar to those in the cDFT case.
Increasing the effective ion diameter (a) results in a saturated layer of negative ions. The
phenomenological model does not produce layering, since the description is too simple to
generate this effect. However, the overall spread of the density can reproduce the length
of the layer if the correct effective ion diameter is chosen. It is interesting to note that
increasing the effective ion diameter a in the MPB model regularly has a more dramatic
effect than increasing the relative ion diameter σff in the cDFT model. This is probably
due to the cubic dependence on a in (2.7). This means that the scaling for a should probably
not be chosen in the same way as the scaling for the actual ion diameter. It is noted in [3]
that the value of a chosen to fit experimental data in one article was close to the diameter of
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Fig. 4.3: First row: cDFT with increasing relative ion diameter (σff ). σff = 0.4, σff =
0.55, σff = 0.7. Second row: MPB with increasing effective ion diameter (a). a = 0.55 nm,
a = 0.70 nm, a = 0.85 nm. Third row: BMPB with increasing correlation length (lc) but
no effective diameter (a = 0). lc = 0.2 nm, lc = 0.3 nm, lc = 0.4 nm. Fourth row: the full
BMPB model. This is the same as row two, but with lc = 0.3 nm. In all cases the reference
line (--) is the pure PB case. β is the inverse of the natural scale for ψ, β = e/(kT ). Note
that there are changes in the vertical scales.

the first solvation shell, rather than the diameter of the ion. In general, it appears that the
value of a would probably be chosen phenomenologically rather than as the known value of
the ion diameter.

The effect of increasing the correlation length lc in the BMPB model is shown in the
third row. The decrease in density of the negative ions is qualitatively similar to that seen
in the cDFT case, but the large increase in the positive ion density along with negative
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potential of that region are not seen in any of the cDFT cases. It is difficult to see for this
example how increasing lc could provide any improvement to the steric model.

The combined BMPB model shown in the final row does not appear to have any ad-
vantage over the MPB model (second row). The increase in the positive density is not seen
in the cDFT case at the smaller ion sizes, and when it is seen it is in much narrower layers.
In conclusion, for this 1:1 electrolyte, it appears that the MPB sufficiently represents the
crowding (but not alternate layering) effects, while the addition of the biharmonic operator
does not appear to improve the representation (in a purely qualitative sense).

5. Colloid mobility in a microchannel. In this section we compute the result of
adding steric effects to the problem of computing the mobility of a colloid in a microchannel.
We use a cylindrical microchannel which is assumed to be of infinite length by making use of
periodic boundary conditions at the termini of the domain. At the center of the microchannel
we place a spherical colloid by subtracting it from the cylinder.

Fig. 5.1: Fluid velocity (z component) in the microchannel. The appropriate slip boundary
condition has been computed resulting in near zero flow velocity in the vicinity of the colloid.
This can be interpreted physically as the colloid flowing along with the fluid in the center
of the channel.

5.1. Colloid velocity computation. In this simulation we use a static mesh and
compute the solution to a time independent problem. As a result it is not possible to
compute the velocity of the colloid directly. In order to circumvent this issue, we apply a
slip boundary condition uz = c at the cylinder wall. The velocity c can be computed so that
the total force acting on the colloid in the z direction is zero. In this case the velocity −c is
equivalent to the velocity of the colloid if it were driven by the same forces in a non-static
mesh. This is equivalent (under certain assumptions) to fixing the frame of reference to the
colloid. We compute c by requiring that∫

∂S

Tz da = 0 (5.1)

where Tz is the z-component of the normal (total) traction vector and ∂S is the spherical
colloid surface.

T = σH · n + σE · n
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Here σH is the contribution from hydrodynamic effects and σE is the Maxwell stress tensor
that determines the electromotive force. These stresses are defined by (see, e.g., [5])

σH = −pI + η
(
∇u + (∇u)>

)
, σE = εε0

(
EE> − 1

2
(E>E)I

)
. (5.2)

An example of the fluid velocity field resulting from this computation is shown in fig. 5.1.

5.2. Finite element mesh. The computational mesh is generated using Cubit [8],
a mesh generation toolkit created at Sandia National Labs. Using Cubit, we specify the
refinement of the mesh on the colloid and the cylindrical shell (fig. 5.2). Since most of
the fine details and the surface integral are computed at the colloid, it is more efficient to
refine the mesh near the colloid more so than at the cylindrical surface. To illustrate this,
we computed the colloid velocity at several mesh refinements (fig. 5.3). It is clear from this
graph that the colloid velocities appear to be converging to a value near 5.4 × 10−5 m/s.
However, by using a mesh that is more refined near the colloid (e.g., the 5-2 mesh) a more
converged value is obtained with far fewer elements (pink diamonds) than with the regularly
refined meshes.

Fig. 5.2: Cutaway of mesh refinements. Left: a 5-4 mesh, where 5 refers to the mesh
refinement of the cylinder and 4 refers to the level of refinement on the spherical colloid.
The numbers are the mesh refinement values defined in Cubit [8]. Center: a 5-2 mesh.
Right: a 2-2 mesh.
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Fig. 5.3: Calculated colloid velocity at various mesh refinements. The blue data points
represent regular mesh refinements.

5.3. Mobilities at various effective ion sizes. To compute the mobility we run
several simulations with various applied fields (Eapp). The fixed parameters are listed in fig.
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5.4. The external field is applied along the axis of the cylinder, i.e. Eapp = [0, 0, Eapp,z].
In the first case we compute the mobility with the pure PB model (sec. 2.1). The velocity
should be linearly related to the applied field and for the most part this is observed in fig.
5.5, barring some error probably resulting from insufficient convergence of the model. The
mobility is computed as the average value: 1.38× 10−10 for the PB case.

External field Eapp,z (N/C) 0.25× 106 1× 106 4× 106

Colloid velocity v (m/s) 0.336× 10−4 1.390× 10−4 5.607× 10−4

Colloid Mobility v/E 1.344× 10−10 1.390× 10−10 1.402× 10−10

Fig. 5.5: Mobilities computed in the pure PB case.

Performing the same computation with varying ion sizes (a) in the steric model (2.7)
demonstrates the effect of an increasingly saturated double layer on the mobility of the
colloid. As the effective ion sizes increase, the mobility is increased (fig. 5.6). We are still
working on understanding the reason for this effect and whether or not it is a physically
relevant. In order to assess whether or not this is meaningful we still need to compare this
to mobilities calculated using the cDFT model.
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Fig. 5.6: Calculated mobilities using the MPB equation (2.7) at various effective ion sizes
(a).

Bulk Density (ρbα) 2.5 × 1023 ions/m3 Colloid Radius 10 nm
Relative permittivity (ε) 80 Channel length 60 nm
Ionic charges (zα) +1,−1 Channel Radius 20 nm
Temperature (T ) 300 K Viscosity 0.856 Pa · s
Colloid charge 200e Fluid density 103 kg/m3

Fig. 5.4: Parameters used for simulations in sec. 5.
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6. Conclusions. We have implemented models that account for the crowding and
correlation effects of ions in charged layers without the high computational cost of an ab-
initio model. These models are able to produce some important features, such as saturation
of the ion layer. However, it is unclear if all of the modifications to the PB model are
useful in the case of the 1:1 electrolyte that we simulated. We plan to continue our work by
investigating the effects of ion-ion correlations on colloid mobility in a nanochannel, which
we described at the end of this article. In order to make a fair comparison, we still require
a coupled implementation of the cDFT and Stokes equations. Once this is complete, we
will be able to assess at what level of detail the ion interactions should be modeled for
this application. For example, we are interested in determining if the alternating layers
seen in cDFT impact the colloid mobility substantially or if the MPB or BMPB models are
sufficient.
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ANALYSIS OF PHASE PRECESSION FROM DUAL COMPONENTS IN
HIPPOCAMPAL PLACE CELLS

KELSEY R. KALMBACH∗ AND FRANCES S. CHANCE†

Abstract. Phase precession in hippocampal place cells is a well studied phenomenon in which cells
spike at progressively earlier phase relative to the theta oscillation as the animal moves through the place
field of that cell. Little is known about the underlying mechanism causing this firing. There exist two
well-known, anatomically-distinct inputs to the CA1 region of the hippocampus, and the combination of
these two inputs could lead to phase precession in the place cells. In this study, we examine neurobiological
data to look for evidence that CA1 place cell firing is driven by two distinct components. We compare place
cell data of both old and young rats to determine if age, which has an impact on hippocampus connectivity
[5], has an impact on place cell firing. We use clustering analysis, phase range analysis, and curve fitting
techniques to quantify the underlying structure of the place field data.

1. Introduction. The hippocampus is believed to play a crucial role in spatial nav-
igation and the formation of episodic memories [14, 18, 19]. Such tasks are often difficult
for computers to reproduce. Neurally-inspired algorithms can take advantage of what is
known about how the brain processes information to compute similar tasks. However, much
is still unknown about the exact mechanisms by which the brain processes information.
Further insights into how the brain performs these computations could lead to improved
neurally-inspired algorithms.

In the hippocampus, it has been demonstrated that many cells only fire when the animal
is in a specific location. These cells are referred to as place cells. The place field of a cell
refers to that specific location where the cell shows elevated firing rates [16, 17, 18]. Because
these cells only fire in specific locations, it is believed that place cells are crucial for spatial
navigation [18]. Additionally, it has been well demonstrated that the firing of these cells
is correlated with the 7-12 Hz theta oscillation in the local field potential (LFP). At the
entry of each place field, spikes occur at a late phase of the theta oscillation. As the animal
moves through the place field, the spikes occur at progressively earlier phases relative to
the theta oscillation. This phenomenon of spikes transitioning from firing at high phases
relative to the theta oscillation to low phases relative to the theta oscillation is known as
phase precession. The phase of spikes at the end of the place field is typically nearly 2π
radians earlier in the theta phase than the spikes at the beginning of the place field, that
is, spikes occur at nearly all values of theta phase [19].

This project focuses on place cells from CA1 pyramidal cells, one of the subfields of
the hippocampus. There are two well-known anatomically-distinct input pathways to CA1:
CA3 and layer 3 of the entorhinal cortex, EC3 [1]. It has been shown that CA3 cells also
form place fields which can show phase precession; however, CA3 cells form place fields
less frequently than CA1 cells [11]. Additionally, CA3 place fields are typically shorter and
show less phase precession than CA1 place fields [11]. Certain studies have shown that
by eliminating either CA3 or EC3 input, CA1 cells will still form place fields and show
phase precession, but the firing is more diffuse and the place fields are larger when either
pathway is eliminated [3, 4, 15]. Therefore, it is possible that both of these pathways can
independently drive CA1 place cell firing, but the combination of these two inputs creates
a more well-defined place field [1]. Input from EC3 arrives in CA1 more than one-quarter
theta-cycle before the input from CA3 [12, 13]. If this theta-phase offset is combined with
a spatial offset between CA3 and EC3 inputs, these two inputs to CA1 could give rise to
phase precession [6].

∗Colorado School of Mines, kkalmbac@mines.edu
†Sandia National Laboratories, fschanc@sandia.gov
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Fig. 1.1: Examples of typical relationships between the theta phase and animal position.
Each dot is one recorded spike. The animal ran from left to right in all figures. Here, theta
phase is reported mod 1 and the phase precession is plotted twice in all cases for clarity.
Typical relationships between theta phase and position are: (a) linear phase precession,
(b) phase precession which accelerates as position increases, (c) two distinct clusters of
spikes giving rise to a boomerang-shaped phase precession, and (d) other nonlinear phase
precession. Data is replotted from Schimanski et al. [22].

Phase precession in rat hippocampal place cells is traditionally thought to be linear
with respect to position [19], but Skaggs et al. demonstrated that phase precession is often
not well described by a linear shift [25]. Some place cells do show linear phase precession
(Figure 1.1A), but many show more complicated phase precession. The phase precession
can accelerate as the rats moves across the place field, giving rise to a downward curve in
the plot of phase versus position (Figure 1.1B). The phase precession can also show two
distinct clusters of spikes giving rise to a boomerang-shaped plot of phase versus position
(Figure 1.1C) or other nonlinear phase precessions (Figure 1.1D) [22, 25]. If the relative
strength of CA3 or EC3 input changed, or CA3 input came from a cell which showed phase
precession, a model based on these two inputs to CA1 could account for many of these
complex patterns of phase precession [6]. This project aims to examine neurobiological data
to look for evidence that CA1 firing is driven by two distinct components.
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It has been shown that there are some connectivity changes to the hippocampus as a
rat ages, which could lead to different firing patterns of place cells [5]. However, the number
of CA1 and CA3 pyramidal cells does not decrease with age. Additionally, in older rats, it
has been demonstrated that the number of synaptic contacts in CA1 from both CA3 and
EC3 does not decrease [5]. However, in older rats, there is a decrease in the number of
functional synaptic contacts from CA3 [5, 21]. Little is known about how aging affects the
connections between EC3 and CA1 [5]. Despite these changes in synaptic connections, the
number of place fields and the range of phase precession is similar in both young and old
rats [24]. It is possible that there is a change in firing patterns of CA1 place cells in older
rats due to changes in synaptic contacts.

In this study, we analyze the firing patterns of both old and young rats to explore the
possibility that CA1 place cell firing is driven by two components, the input from CA3 and
from EC3. We look at clustering the data to get a sense of the underlying structure of the
place field data, and we perform an arctangent fit to the place field data to quantify the
transition from firing at a high theta phase to firing at a low theta phase. We find that,
in general, there are no differences between the structure of place fields for the young and
old rat populations. However, there is some evidence for a transition between a component
firing at a high theta phase to a component firing at a low theta phase, which could be
caused by dual inputs.

2. Methods and Materials. To investigate the underlying structure of the place field
data, we analyze CA1 place field data from a study published in 2013, provided to us by
members of the Barnes lab at U. Arizona. First we preprocess the data with techniques
including scaling and unwrapping the data. Different preprocessing techniques were needed
for different analyses. We then analyze the data in three different ways: data clustering,
curve fitting, and a phase range analysis.

2.1. Electrophysiology Data. A data set from a study published in 2013, [22], has
been provided to us by members of the Barnes lab at U. Arizona. The experimental studies
have been described in detail elsewhere [22]. Briefly, in these experiments, 12 adult Fischer-
344 rats were trained to run back and forth on a track for a food reward. Of the 12 rats, 6
were young (9-12 months) and 6 were old (25-28 months). After a period of initial training,
the rats were implanted with 12 tetrodes in the dorsal layer of the hippocampus to record
spikes extracellularly from CA1 pyramidal cells. The rats were allowed 14 days to recover
from surgery and to have the tetrodes adjusted to obtain clear CA1 action potentials. After
recovery from the surgery, rats ran a novel circular track with a barrier (85 cm diameter),
with CA1 activity recorded. Rats were placed on one side of the barrier and ran to the
other side of the barrier for a food reward, then turned around and ran back to the original
starting position for another food reward. Rats ran 74 laps in a session with a resting period
in their home cages between training sessions. Cell activity was recorded for two training
sessions a day over a 31 day period. One old rat became ill and did not complete all 31 days
of the experiment [22].

Only cells with an average firing rate of greater than 4 Hz during the running sessions and
greater than 0.01 Hz during rest periods were considered in this analysis [22]. In addition,
spikes which occurred when the running speed was less than 6 cm/s were not considered
in this analysis since theta oscillations do not occur when the rat is stationary [27]. Place
fields were then defined as locations where the peak firing rate was greater than > 2 Hz.
The place field boundary was set as the location when the firing rate fell below 10% of the
local peak firing rate on either side of the peak. Cells with no place-specific firing patterns
were not included in this analysis. Additionally, firing that occurred near the reward sites
were not included in this analysis since the acts of turning and eating are not associated
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with theta wave activity [22, 27]. Finally, only place fields whose distribution of spikes is
approximately unimodal along the position axis are included in this analysis. Runs in the
clockwise and counterclockwise directions were analyzed individually since it has been well
demonstrated that the firing pattern and formation of place cells is highly dependent on
direction in narrow arm mazes [10, 22].

2.2. Data Scaling. For many computations done on the place field data, the relative
scaling of the data can have a large effect on the results obtained. As such, we have scaled
the data in two different ways for different applications of data analysis. In both, we have
scaled the data so that it does not depend on the absolute length of the place field, which
can vary greatly within and between rats. For all place fields, we define the position and
phase of each spike as (xi, φi) for spike i, with i = 1, . . . , N , the total number of spikes in a
given place field. The position variable x is a one dimensional linearization of the circular
track.

For the first data scaling, we scaled the theta phase such that it is defined on [0, 2π).
This scaling was chosen so that future calculations on the periodic data are based on the
assumptions of 2π periodic data. We then scaled the position data such that the standard
deviation in the position is the same as the standard deviation in the theta phase. Because
the data is periodic with respect to the theta phase variable, a modified standard deviation
definition was used. The angular standard deviation is defined as

sφ =
√

2(1−R) (2.1)

where R is the length of the mean resultant vector, defined as

R =
1
N

√√√√( N∑
i=1

sin(φi)

)2

+

(
N∑
i=1

cos(φi)

)2

(2.2)

[2]. Then the position data is scaled by sφ
sx

, where sx is the standard deviation of position,
so that the two variables so that the two variables have equal standard deviations. The
standard deviation of position is dependent on the length of the place field and the spread
of the spikes, so scaling the position variable based on the standard deviation will take into
account the absolute length of the place field. This scaling ensures that distance measures
are not biased towards one variable over the other. This scaling is used when a distance
measure between data points is needed.

For the second scaling, the theta phase is once again scaled such that values for theta
can range from [0, 2π). Then the position variable is rescaled so that it defines the percent
of the place field crossed. That is, we rescale x such that

xi =
xi − min

i=1,...,N
xi

max
i=1,...,N

xi − min
i=1,...,N

xi
. (2.3)

We use this scaling whenever a comparison across place fields is needed. This scaling ensures
that the both the phase and location are defined on the same range of values, [0, 2π) and
[0, 1] respectively.

2.3. Unwrapping Data. For certain computations, it is required that the data not be
defined on the unit cylinder, but rather on a plane. Often, to unwrap the circular data, the
data is cut at a phase such that the linear regression line of the unwrapped data gives the
largest explained variance [11, 19, 23]. However, with this method of unwrapping the data,
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there will nearly always be at least a few points which are classified as having a low phase
when all neighboring points have a high phase or the other way around. These points will
provide a large amount of bias when trying to perform calculations using this unwrapped
data [9]. To address this issue, we developed a new method for unwrapping data using a
nearest neighbors approach. Starting in the center of the place field and moving out to
points further away from the center, we look at all data points within a certain radius of
the given data point. If more than half of these points are at a much higher phase than
the given point (more than π greater), 2π is added to the phase. Similarly, if more than
half of the points in the radius are at a much lower phase, 2π is subtracted from the phase.
This process is iterated over the entire data set until no points change in phase. Because
the density and general shape of the phase precession varies greatly between place fields,
there is no single radius which will give a proper unwrapping of the data for every place
field. Instead, this algorithm is run over a range of radii: 0.5 to 2 in steps of 0.05. The
proper unwrapping is chosen as the resultant place field with the most negative correlation
coefficient. Since this process is dependent on the distance between data points, we use the
first method of scaling described above, such that the standard deviation is the same in
both variables.

2.4. Data Clustering. Clustering analysis was performed on the position and phase
data for each individual place field. To cluster the data, we used a variation on the K-means
clustering algorithm. Since the data is defined on a cylinder, that is, φ is periodic while
x is not, the distance measure needs to be modified accordingly. The standard Euclidean
distance is used in the x dimension, but in the φ direction, the distance between two points
φi and φj is

min (|φi − φj |, 2π − |φi − φj |). (2.4)

This ensures that the distance between 0 and 2π is zero, and the distance between 0 and π
is maximal. Additionally, the average of cylindrical data needs to be modified accordingly.
The standard average is used in the x direction, but the average of the phases φi is defined
as

φ = arctan∗
∑
i(sin(φi))∑
i(cos(φi))

(2.5)

where arctan∗ is the quadrant specific arctangent function [2]. Here we will use the first
scaling method defined above, with the standard deviation the same for both the phase and
position variables, since the clustering depends on the distance between two points.

Briefly, the K-means algorithm begins by randomly setting k points to be the cluster
centers. Then, each additional data point is assigned to the nearest cluster center, using the
appropriate distance measure. Once all points are assigned a cluster, the cluster center is
redefined as the average of all points in that cluster. Every point is then once again assigned
to the nearest cluster center and the cluster centers are redefined based on that set of points.
This process is continued until the assignment of points does not change after the cluster
center is redefined [8].

The K-means algorithm requires the number of clusters k to be known beforehand [8],
but we would like to determine the optimal number of clusters to describe the data. To
do this, we use the Bayesian Information Criterion. The BIC attempts to determine the
optimal number of clusters by rewarding how well the data is described by the clustering
while penalizing the added complexity of adding more clusters to the model [20]. The BIC
value was calculated for clustering done with k = 1, . . . , 6. We only optimized the number of
clusters over the possibility of 1, . . . , 6 clusters because it was expected that the data would
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be well described by either 1 or 2 clusters. Allowing a maximum of 6 clusters allowed us
to test well beyond the expected limit without adding a significant amount of computation
time to the algorithm. The model with the highest value of BIC was considered the ‘best’
model, and the corresponding value of k was considered the optimal number of clusters [20].

The K-means algorithm only converges on a locally optimal solution, or can fail to
converge if the clusters do not remain constant after the algorithm reaches some maximum
number of iterations of the algorithm [7]. Because of these two factors, the clustering might
not be consistent. If the clustering is not consistent, the BIC values might be different for
different runs of the algorithm, which can in turn change the optimal number of clusters k
determined by the BIC measure. Therefore, the algorithm to determine the best model was
run several times and the optimal number of clusters was determined to be the mode of the
optimal number of clusters for each run. Typically, the algorithm converged on the same
number of clusters for all runs.

2.5. Fitting Data to the Arctangent Function. The unwrapped data of each place
field was fit to an arctangent function with four parameters

Φ(x) = −a · arctan((x− b) · c) + d. (2.6)

where x are the position of the spikes and Φ(x) is the predicted phase of the spike. This
functional form was chosen because it approaches two different horizontal asymptotes as
x→ ±∞. If there exist two distinct clusters of spikes which fire at different average phases,
we expect that the theta phase will tend to two different values at the entrance and exit
of the place field respectively. This behavior might be well captured by the arctangent
function. We would like to able to compare certain aspects of these fits, such as the location
of the inflection point across place fields, so we scale the unwrapped data using the second
method described above, with location defined as percentage of place field crossed. Here,
the curve is fit such that the difference between the actual phase of the data and the phase
predicted by the curve is minimized. This does not depend on the distance in both the
position and phase variables, so the first scaling method is not needed.

2.6. Phase Range Analysis. The phase range is defined as the slope of the line
calculated using a circular-linear fit, described below, multiplied by the spatial range of the
trial. If the place field is being considered as a whole, the spatial range of the trial is one.
If we are considering each pass through the place field separately or only one cluster of the
data, the spatial range is the fraction of the place field crossed in those spikes [23]. To obtain
the slope of the line passing through the place field, we use a circular-linear fit as described
in [9] to fit the data points (φi, xi) to the line

Φ(x) = 2π · a · x+ φ0 (2.7)

where a is the slope and φ0 is the phase offset. The estimate of the slope a is the value of
a that maximizes the function

R(a) =

√√√√√ 1
n

n∑
j=1

cos(φj − 2π · a · xj)

2

+

 1
n

n∑
j=1

sin(φj − 2π · a · xj)

2

(2.8)

The estimate for the phase offset is given by

φ0 = arctan∗
∑
j sin(φj − 2π · a · xj)∑
j cos(φj − 2π · a · xj)

(2.9)
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where arctan∗ is the quadrant specific arctangent function [9]. The values of the slope were
limited to the range [−2, 0] since for a circular-linear fit, there always exists some arbitrarily
high slope which will pass through every data point, but this does not give a good indication
of the average slope of the place field [23]. For the phase range analysis, we use the second
method for data scaling, such that position is defined as percentage of place field crossed.
The only distance measure used here is the difference between the phase of the data and
the estimated phase, so there is no need for the data to be scaled such that there is no bias
in distance in one variable over the other. Having the position variable be defined as the
percent of the place field crossed is consistent with the notion of the spatial range of the
trial, which is used in this calculation.

3. Results. All results discussed are for day seven of the experiment, unless otherwise
noted. This day was chosen because there was data from each of the twelve rats and it was
not a novel environment for the rats. Similar results were obtained for all other days of the
experiment.

3.1. Arctangent Fit. Many place fields show a distinct transition between firing at a
high theta phase to firing at a low theta phase. To quantify this transition, we fit the place
field data to an arctangent function. An arctangent function transitions from higher values to
lower values, with parameters that dictate the slope and place of that transition. Information
about where and how quickly that transition occurs would be useful in quantifying how the
firing in the place fields evolves for different rats.

For the fit to the arctangent function, we require that there is phase precession in the
place field. We say that the place field exhibits phase precession if the correlation coefficient
of the unwrapped data is less than −0.4 [23]. This eliminates both place fields that show
no phase precession over the entire range of theta (Figure 3.1A) and place fields that show
no phase precession because there are only spikes over a small range of theta phases (3.1B).
Both of these cases where there is no phase precession are common in certain rats on
different days. In cases where there is no phase precession, an arctangent fit will not give
any meaningful results, so we do not include these place fields in our analysis.
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Fig. 3.1: Examples of typical phase precession plots where there is no phase precession
evident. A, No phase precession seen over the entire range of theta phase. B, No phase
precession is seen because spikes only occur over a short range of theta phases. Here, theta
phase is plotted mod 1 and the phase precession is plotted twice for clarity. Data is replotted
from Schimanski et al [22].
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When there is phase precession in the place field, the arctangent fit will generally capture
the overall behavior of the phase precession; however, this does not seem to be the best
function to fit the data. The arctangent function will tend to a slope of zero as x reaches
the entrance or exit of the place field, which does not usually fit the data well. A typical
fit to the arctangent function when there is a clear transition from firing at a high theta
phase to firing at a low theta phase is shown in Figure 3.2A. Here, the point and shape
of the transition is well captured by the arctangent function, but the end behavior tends
to be oversimplified. Both the upper and lower components of this phase precession show
some amount of slope. This behavior is not well captured by the arctangent fit, which
assumes that the behavior on either side on the transition range will tend to a constant
value. However, in other cases, the arctangent fit does not well capture the transition from
the firing at a high phase to firing at a low phase, such as in Figure 3.2B. Here, the spikes
at higher phases show a general downward trend while the spikes at a lower phase show a
general upward trend. Because an arctangent function cannot capture this end behavior,
the curve does not fit the data well. In particular, the point of inflection does not seem to
well capture where the actual transition between the groups occurs.

There are cases where the phase precession appears linear and there is no clear evidence
of two components. In these cases the arctangent fit does not give meaningful results. The
arctangent function approaches horizontal asymptotes as x → ±∞, but in cases where the
phase precession appear linear, this long term behavior of the arctangent fit is not observed in
the range of meaningful position values and the asymptotes are often well outside the range
of [0, 2π). The arctangent function was primarily chosen to see how the data transitioned
from high to low theta phases as indicated by the long term asymptotic behavior of the
function. For cases where the phase precession appears linear, this long term behavior
has no relevant meaning in understanding the phase precession. So, for these cases, the
arctangent function gives no insight to the overall behavior of the phase precession.
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Fig. 3.2: Examples of typical arctangent fits to place field data which show clear evidence
of two components, one at a high theta phase and one at a low theta phase. In both plots,
the larger black dot indicates the point of inflection of the arctangent function. A, The
transition is well captured by the point of inflection. B, The transition is not well captured
by the point of inflection. Here, theta phase is plotted mod 1 and the phase precession is
plotted twice for clarity. Data is replotted from Schimanski et al [22].

Because the arctangent fit cannot reliably give a good assessment of the point of in-
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flection where the graph transitions from the higher phase to the lower phase, we do not
explore the properties of this fit further.

3.2. Clustering. In addition to being able to quantifying the transition between a
group of spikes occurring at a high phase to those spikes occurring at a low phase, we would
like to be able to classify the individual spikes as coming from a component driven by a high
phase or a low phase. To group these spikes, we cluster the data using a K-means algorithm.
With the data clustered, we are able to quantify the number of place fields that appear to
have two distinct components from those that do not. We are also able to quantify the
relative size and other properties of the components from the place fields with two distinct
clusters.

When the clustering algorithm is run on all place fields, the spikes are typically clustered
into either one or two clusters, while occasionally the algorithm determines that three or
more clusters are optimal. The numbers of clusters for all place fields on day seven of the
experiment are summarized in Table 3.1. From visual inspection, the place fields that are
classified as having three clusters often appear to be well classified as two groups, with
one group much larger than the other. The K-means algorithm tends to group data into
roughly equal size groups. When the data is well described by two components, one being
much larger than the other, the algorithm will often determine that the optimal number of
clusters is three, with the larger component being split into two clusters. Also if there are
clear regions of firing at high and low theta phases, but a rather large region where these two
seem to overlap, the algorithm will often choose three clusters and specify one cluster for
that transition area. If there exists a significant amount of noise in the data, the clustering
algorithm will typically not give meaningful results, which explains many of the place fields
that are grouped into more than three clusters.

In general, the data is grouped into one cluster when there is no phase precession, such
as those examples in Figure 3.1, or when the phase precession is generally linear (Figure
3.3A). The data is often clustered into two clusters when there appears to be a distinct
transition between spikes at a high phase to spikes at a low phase (Figure 3.3B). The
clustering distribution is similar for the data on other days.

Number of Clusters 1 2 3 > 3 Number of Place Fields
All place fields 248 190 52 21 511
Old rats 94 90 13 9 206
Young rats 154 100 39 12 305

Table 3.1: The number of place fields clustered into 1,2,3, and more than 3 clusters respec-
tively on day seven of the experiment. The breakdown of distribution of clusters for all
place fields, all place fields of old rats, and all place fields of young rats respectively

3.3. Properties of Clustering Analysis. We see that, in general, the number of
spikes is approximately evenly split between the two clusters in the cases where the data
is grouped into two clusters. For all rats on day seven of the experiment, the first cluster
has approximately half of the total number of spikes (53.18% ± 9.89%). There is little
difference between the old and young rats in the relative size the two clusters. For old rats,
the first cluster has 54.18% ± 9.84% of the total spikes, and for the young rats, the first
cluster has 50.24%± 9.60% of the total spikes. The fact that the number of spikes in each
cluster is nearly equal is in part explained by the fact that the K-means algorithm tends
to find clusters of equal sizes. However, spikes of very different phases and positions are
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Fig. 3.3: Examples of typical clustering: A, One cluster. B, Two clusters. Here, theta phase
is plotted mod 1 and the phase precession is plotted twice for clarity. Data is replotted from
Schimanski et al [22]

rarely clustered together to account for the equal sized clusters. More often, spikes in this
transition space between the high and low theta phases are clustered in such a way that the
two clusters are roughly equal size, which still gives reasonable looking clusters.

We also find that the two clusters tend to be nearly anti-phase to each other. The
center of mass of the first cluster is, on average, at 4.73 radians and the center of mass of
the second cluster is, on average, 1.69 radians. The difference between the center of mass of
these two clusters is 2.98 ± 0.42 radians for all place fields with two clusters on day seven of
the experiment. This is similar to the phase difference between the two clusters seen in the
clustering analysis of place fields by Yamaguchi et al [28]. There was no difference in the
phase difference between the two clusters for the young and the old rat populations (2.94
± 0.44 radians for old rats and 3.01 ± 0.39 radians for young rats). These properties were
similar on all other days of the experiment.

3.4. Phase Range Analysis by Cluster. Looking at the phase range of the individ-
ual place fields gives a good indication of the overall phase precession of the place field. It
has been shown that, typically, spikes precess over an entire theta cycle [19], but the exact
degree of phase range can vary greatly between specific place fields. A lower phase range
would imply that there are significantly fewer spikes at either a high or low phase. Thus, a
lower average phase range in a group of place fields could indicate that that group of cells
is typically receiving less input that would normally cause the cell to fire at either the high
or low phase.

The phase range was calculated for each of the place fields on day seven of the exper-
iment. The average phase range was −5.32 ± 2.93 radians. That is, on average, the place
fields precessed nearly one entire theta cycle, which is consistent with previously reported
data [19, 23]. We find that the phase range distribution is different among the place fields
with one cluster and those with two clusters (Figure 3.4). The place fields with one cluster
had, on average a phase range of −4.53 ± 3.32 radians while the the place fields with two
clusters had, on average a phase range of −5.57 ± 1.76 radians. The difference between
these two means was 1.05 radians, and was statistically significant (p < 0.001). We see as
well that the spread of phase range is much higher for the place fields with only one cluster.
This is likely because the place fields categorized as having one cluster tended to either show
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linear phase precession, which would give a high phase range, or did not show much phase
precession, which would give a low phase range. Additionally, there are many place fields
that show some, approximately linear, phase precession, though not over the entire range
of theta phases. These places fields contribute to those intermediate values of phase range.
This gives rise to both the lower average and wider spread of phase ranges. There was no
significant difference in the phase ranges of the old and young rat populations.
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Fig. 3.4: Distribution of phase ranges for place fields on day seven of the experiment A, one
cluster place fields. B, two cluster place fields.

For each place field that was grouped into two clusters, the spikes within each cluster
do not show a large phase range. This is likely, in part, due to the clustering algorithm
itself. The K-means clustering algorithm tends to cluster data into spherical components,
so many of the points that do not clearly fall into one of the two clusters are clustered so
that the resulting clusters are more spherical. Therefore, it is unlikely that the average slope
of these clusters will give an accurate description of the true slope of the points belonging
to that component.

3.5. Results for Novel Environment. On day one of the experiment, the track
and environment were novel to the rat. On this day, the map of the environment, which
is retrieved on most subsequent runs along the track, is formed [22, 26]. Therefore, the
properties of the place fields may be slightly different for the novel environment compared
to the subsequent trials. If the memories of the rats are formed in a different way than they
are stored and later retrieved, there may be different properties of the place field structures
on the first day of the experiment as opposed to subsequent days of the experiment. The
same analysis as described in the previous sections was run on the day one data to compare
the effects of a novel environment on the place field properties.

The clustering analysis gave very similar results as on day seven. Once again, most place
fields were classified as either one or two clusters, with a few place fields being classified as
having more clusters. The number of clusters is described in Table 3.2. Once again, for all
place fields classified as having two clusters, the two clusters tend to be of roughly equal
sizes.

Of those place fields with two clusters, the two clusters still tended to be nearly anti-
phase from one another on day one of the experiment. The difference between the center of
mass of these two clusters is 2.89 ± 0.42 radians for all place fields described by two clusters.
Once again, there was no difference in the young and old rat populations.
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Number of Clusters 1 2 3 > 3 Number of Place Fields
All place fields 248 182 49 24 504
Old rats 106 98 28 18 250
Young rats 142 84 21 7 254

Table 3.2: The number of place fields clustered into 1,2,3, and more than 3 clusters respec-
tively on day one of the experiment. The breakdown of distribution of clusters for all place
fields, all place fields of old rats, and all place fields of young rats respectively

The phase range was similar between day one and day seven of the experiment. Both
the phase range over all the place fields and the phase range over the one and two cluster
place fields gave similar results with no statistically-significant difference between the days.
Once again, there was no difference between the young and old rat populations on day one.

Overall, based on these measures, there was no difference between the place field proper-
ties on the first day of the experiment as compared to the subsequent days of the experiment.
This could in part be because there were two sessions each day, with many runs along the
track. Depending on how many runs it took to form the place field maps of the environ-
ment, it could be that most of these spikes came from runs in which the map was being
retrieved rather than newly formed. Therefore, any properties that might have been slightly
different about the formation of the map over the first several runs of the track were lost
when averaging out over all runs of the track for that day.

4. Discussion. There is some evidence in the data that might suggest that phase
precession is a process driven by two distinct components. One particularly interesting
feature of this data is those place fields which show no phase precession but only have spikes
over a very limited range of theta phases, such as in Figure 3.1B. This behavior is fairly
common in certain rats, although there does not appear to be any correlation between the
age of rats and the prevalence of these types of place fields. Additionally, the range of theta
phases for these place fields can either be centered around a high phase or a low phase. If
the firing of CA1 cells is driven by both input from CA3 and EC3, place fields that show
firing over only a limited range of theta phase could be CA1 cells driven by only one of these
two inputs. The limited range of theta phase, either high or low, could be a result of which
of these two inputs is driving the firing. Additionally, the clustering revealed that many
of the place fields were well described by a distinct transition from a firing at a high theta
phase to firing at a low theta phase. This distinct transition could be a result of a change
in the inputs causing the CA1 cells to fire.

Based on the measures considered here, there appears to be no significant difference
in CA1 place field spiking between old and young rats. This could imply that while the
number of functional synapses from CA3 decreases in older rats, this does not have a large
impact on the excitatory input CA1 place cells receive from CA3 [5, 21]. Also, since little
is known about the connections between EC3 and CA1 in aged rats [5], it is possible that
these connections also weaken with age and thus the balance of inputs to CA3 does not
change in aged rats, giving rise to similar properties in both young and old rat place field
data. Conversely, if CA1 place cell firing were driven by some mechanism other than dual
input from CA3 and EC3, changes in CA3 connectivity would not impact the place cell
firing of CA1 cells. This could also explain the lack of differences between CA1 place cell
firing in the young and old rat populations.

In general, the K-means clustering algorithm is able to distinguish between place fields
that show a distinct transition between a firing at a high theta phase to a firing at a low
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theta phase and those place fields that do not. However, there are a few features of this
algorithm that introduce some bias in the clustering. First, the K-means algorithm is highly
dependent on the relative scaling of the two variables [7]. We have scaled the data in such
a way that the distance measure should not be biased towards either phase or position.
However, a different scaling of the data, with a different justification, would lead to very
different results in the clustering. Additionally, the K-means algorithm tends to find clusters
that are of approximately equal size [7]. Looking at the resultant clusters of the place fields,
roughly equal size clusters tend to be reasonable. However, there are cases where one cluster
is obviously smaller than the other, so the algorithm will tend to group the larger cluster
into two clusters. This makes it slightly harder to classify all of the place fields based just on
the number of clusters. Also, the algorithm is not robust to noise [7]. If there is a significant
amount of noise in the data, which is prevalent in these data sets, the algorithm will often
find three or more clusters to try to account for the noise in the data. This makes it very
difficult to classify the behavior of place fields with more than two clusters. They could
either be two distinct groups of greatly different sizes or they could be of either one or two
distinct groups, but with noise that is being captured in the other clusters.

A different clustering algorithm might be able to classify the properties of the place
field data. The difficulty, however, is that the data is defined on a cylinder. This leads to
different distance measures in the two directions of the data, which can create difficulties
in the clustering algorithm. Clustering the data based on some underlying probability
distribution would mitigate many of the above difficulties; however, there are no common
probability distributions which are defined on the unit cylinder. Other common period
distribution such as the von Mises distribution assume all data is periodic. If the data is
unwrapped to be defined on a plane, a more common probability distribution could be used,
but any unwrapping of the data still creates artificial boundaries which could cause a bias
in the clustering. The data could also be redefined where the place field is replicated over
many theta periods. This would eliminate the issues of the data being periodic in the theta
direction for all but the first and last repetitions of the place field. Then the clustering of
the data in one of the middle replications of the place field could be taken to be the true
clustering of the data [28]. However, this method often does not work well, particularly
in the presence of noise. Noise at the entrance or exit of the place field is often grouped
into one cluster across all place fields, which makes it difficult to determine the number
of clusters for just one replication of the data. Also, with many place fields that do not
show two distinct clusters, this method of clustering will often not give consistent clustering
across all replications of the place field, making it impossible to determine the appropriate
number of clusters for that place field.

While the arctangent fit was not able to accurately capture the behavior of the transition
between the two components of the place field, a way to describe this transition could provide
useful insights to underlying structure of the phase precession. Where the point of transition
occurs and how quickly the data transitions between these two components could provide
useful information about which of the two components is dominant and what the interaction
between these two components is. A better fit would be some function which tended to a
linear function, not simply a line with zero slope, on either side of this transition. This
would prevent the common issue we saw with the inflection point not accurately capturing
the transition due to the spikes on either side not tending to a single phase. This kind of a
fit would also be able to provide more information about the behavior of the spikes on either
side of the transition point than a simple arctangent fit. The slope of the two components
may contain useful information for understanding the underlying mechanism driving CA1
firing. As seen in the phase range analysis, simply fitting a line to both of the clusters in
all two-cluster place fields did not give meaningful results of the slope of those components
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due to the clustering algorithm. A more sophisticated measure would be needed to classify
all spikes that have approximately the same trend, which could then be used to determine
the change in slope between the two components.

5. Conclusions. The K-means clustering was able to distinguish between place fields
that showed a clear transition from spiking at a high theta phase to spiking at a low theta
phase and those that do not. However, of those place fields which did not show this clear
transition between a firing at a high and low theta phase, some showed a linear phase
precession, while others showed very little phase precession. The difference between these
firing patterns is not captured by the clustering analysis. However, some of the differences
between these firing patterns is captured in the phase range analysis. For place fields with
one cluster, there is a much larger spread of phase ranges as compared to those place fields
with two clusters. This spread of phase ranges helps to quantify the different behaviors of
phase precession for one cluster place fields, those which show linear phase precession over
the entire range of theta, and those which do not spike over a wide range of theta phases.

While a way to quantify the transition between the two components would provide
useful insight to the difference in place field firing patterns, a simple arctangent fit was not
able to fully capture the behavior of the place field and thus did not usually well capture that
transition. Further exploration on quantifying the way in which the spikes transition from
high theta phases to low theta phases could help further explain the underlying mechanism
of what causes the place cell phase precession.

Overall, there was some evidence to suggest that there is a distinct change in firing
patterns in CA1 place cells, which could be caused by a shift in the underlying mechanism
causing the CA1 cells to fire. However, we did not find that the age of the rat had a
significant impact on the firing pattern of the place cells.
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CONSTRAINING THERMAL OSCILLATIONS IN MOLECULAR
DYNAMIC SIMULATIONS

RACHAEL KELLER∗, STEWART SILLING† , AND QIANG DU‡

Abstract. Peridynamics models continuum mechanics where integral equations are considered in-
stead of traditional differential equations. Peridynamic theory has been shown to significantly overlap with
molecular dynamics, motivating the casting of molecular dynamics (MD) simulations in the peridynamic
framework. Doing so would allow coarse-graining, reducing the scale of the simulations to more computa-
tionally reasonable sizes. Peridynamics has been used thus far to model MD with static forces, and this
report explores a method for incorporating time-dependent thermal oscillations on the fine scale.

1. Introduction. Molecular Dynamic (MD) simulations describe the behavior of many
atoms interacting together– a computationally expensive task. Coarse-graining scales the
number of degrees of freedom from many to few. With many common properties to MD,
peridynamics provides a framework for modeling MD as a continuum. Such work has been
done in the static case [6]. This project explores incorporating more general physics at
the fine level. Thermal forcing is applied at the atomic level, and an additional force of
constraint is added in to capture the net effect on a bin of atoms. This paper describes
the framework of the problem, presents the constrained form and a method to solve it, and
reports on numerical experimentation.

1.1. Peridynamics. Bond-based peridynamic theory is a powerful application of the
traditional spring-mass problem in a broader setting, first presented in [8]. Assuming that
the interactions among an n-body system have some locally compact behavior within the
whole space, peridynamics reformulates the equations of motion using a linear approximation
to the potential and integrating spatially over the interaction space, as determined by the
peridynamic horizon. This subsection details the peridynamic framework and its consistency
with MD.

In peridynamics, the trajectory for an atom x ∈ {xi}ni=0 is given by

ρü =
∫
Hx

f(u(x′, t)− u(x, t),x′ − x)dVx′ + b(x, t), (1.1)

where Hx is the horizon of x, u is the displacement field, ρ is the mass density of the body
at x, and f is the pairwise force density function [11]. Consider the following change of
variables.

ξ = x′ − x; η = u(x′, t)− u(x, t),

so that ξ describes the relative position of atoms and η describes their relative displacements.
The horizon of x is defined as the positive δ such that

| ξ |> δ =⇒ f(η, ξ) = 0 ∀η.

It is assumed that such a δ exists for the given problem. In MD the time evolution of a
given atom is determined by the interatomic forces between atoms within a cut-off radius,
so MD is consistent with peridynamic theory in this respect.

Further, the properties assumed for microelastic peridynamic materials is consistent
with MD. A microelastic peridynamic material has a pairwise force satisfying the following.
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First, the net work on a fixed particle due to any interaction with another along a fixed,
closed curve is zero. More precisely,∮

Γ

f(η, ξ) · dη = 0, for any closed contour Γ, ∀ξ 6= 0.

Next, the forcing function f is required to be such that

f(−η,−ξ) = −f(η, ξ) and (ξ + η)× f(η, ξ) = 0 ∀η, ξ,

where the former assures conservation of linear momentum and the latter ensures conserva-
tion of angular momentum. Further, we assume f is of the form

f(η, ξ) =
∂w

∂η
(η, ξ) ∀ξ,η.

That is, f is derivable from a scalar, differentiable function w, the microelastic pair-wise
potential. The Lennard-Jones potential for MD simulations satisfies these properties. Using
a first-order, linear approximation, f can be approximated as

f(η, ξ) = C(ξ)η ∀η, ξ,

where C(η) = ∂f
∂η (0, ξ) ∀ξ. Equation (1.1) then becomes

ρü =
∫
Hx

C(x,x′)(u(x′)− u(x))dVx′ + b(x), (1.2)

so that the equilibrium equation is∫
Hx

C(x,x′)(u(x′)− u(x))dVx′ + b(x) = 0 ∀x ∈ B.

The spatial integration yields the salient feature of peridynamics– discontinuities in the form
of bond breakage or crack growth evolve naturally in the system.

1.1.1. Clustering atoms. Suppose the region B were partitioned into K subregions,
so that

⋃K
k=1 Bk = B. Define a characteristic function φ by

φk(x) =

{
1/vol(Bk) x ∈ Bk

0 otherwise,
(1.3)

for each k ∈ {1, 2, . . . ,K}, so that the normalization∫
Bk
φk(x)dx = 1 ∀k ∈ {1, 2, . . . ,K}

holds. Then for any displacement field u, the K average displacement vectors are defined
by ∫

B
φk(x)u(x)dx, k = 1, 2, . . . ,K.
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1.2. Constrained Minimization. Consider constraining the atomic displacements of
a bin of atoms Bk to obtain a coarse-grained approximation vk. In 1D

vk −
∫
B
φk(x)u(x)dx = 0, for each k = 1, 2, . . . ,K,

where vk is prescribed average atomic displacement for the set of atoms in bin Bk. The
constrained potential energy functional J is defined

J = Φ−
K∑
k=1

λk
(∫
B
φk(x)u(x)dx− vk

)
, (1.4)

where Φ is the potential energy of the system,

Φ =
∫
B

([
1
4

∫
Hx

C(x, x′)(u(x′)− u(x))2dx′
]
− b(x)u(x)

)
dx.

In this paper, it is assumed b(x) = 0. Requiring J be stationary and taking the first
variations with respect to λk and u, the following is obtained [10].

∫
B
φk(x)u(x)dx− vk = 0. (1.5)

∫
Hx

C(x, x′)(u(x′)− u(x))dVx′ +
K∑
k=1

λkφk = 0. (1.6)

Let C0 denote the finest-level (level 0) approximation of f , with {u0
i } representing the

displacement of the atoms, N0 and K0 the total number of atoms and bins, respectively,
and Bk0 the bins. Using midpoint quadrature, Equation (1.6) is

∑
j∈Hj

C0
ij(u

0
j − u0

i ) +
K0∑
k=1

λ0
kφ

k,0
i = 0, i = 1, 2, ..., N. (1.7)

Then we have an (N0 +K0)× (N0 +K0) system of equations to solve for the unknowns

{u0
1, u

0
2, . . . , u

0
N0 , λ0

1, λ
0
2, . . . , λ

0
K0}.

These equations form the Karush-Kuhn-Tucker conditions of the system.
C0 φ

φT 0




u0

λ0


=


0

v


(1.8)
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Assuming the (N0 +K0)× (N0 +K0) matrix is nonsingular, Equation (1.8) implies
A∗ R

RT −C1




0

v


=


u

λ0


, (1.9)

so that the λ0 are the corresponding forces for the next level, C1.

1.3. Problem Statement. The goal is to determine the forces λ that characterize
the additional forcing from the added thermal oscillations for each bin of atoms. The forces
acting on a given node are assumed to be the pair-wise forces given by the Lennard-Jones
potential, the Lagrange multiplier forces λφ, and a thermal source term Q(t). The proposed
solution method uses a root-solving technique along with Verlet and Simpson approximation
to obtain the Lagrange multipliers.

2. Time-dependent Dynamics.

2.1. Dynamic Problem Formulation. Consider a more general MD model incor-
porating time-dependent thermal oscillations [10] with a thermal forcing function Q(t).
Suppose a system has N0 atoms, each represented by u0

i = u0(xi, t), where xi represents
the position of atom, or node, i in the initial configuration and u0(xi, t) the displacement
of node i. Further suppose the system is divided into K0 bins, Bk0 so that each of the N0

atoms belongs to one and only one bin. It assumed that the atoms are clustered according
to nearest-neighbors. Given a set of prescribed mean atomic displacements for each bin, vk,
k ∈ {1, 2, . . . ,K}, the constraint imposed is

1
τ

∫ τ

0

∫
Bk

(φ(x)u(x, t)) dx dt− vk = 0.

Spatial discretization using midpoint rule on φ(x)u(x, t) yields the approximation

1
τ

∫ τ

0

∑
i∈Bk

φki ui(t)dt− vk = 0,

where now
∑
i∈Bk φ

k
i = 1. For node i,

müi(x, t) =
∫
Hi

Cij(uj − ui) +Q(t),

where Cij form the n×n matrix of linear approximations to the potential C0 and Hi is the
discrete-form horizon of node i. Since Q(t) is applied at a specific time step and is purely
temporal, the properties of C0 are preserved. From Equation (1.6),

müi(xi, t) =
∫
j∈Hi

C0
ij(uj − ui)duj +

∑
j∈Hi,Bk

λ0
kφ

k,0
j +Q(t),

and thus, following (1.7),

müi(xi, t) =
∑
j∈Hj

C0
ij(u

0
j − u0

i ) +
∑

j∈Hi,B0
k

λ0
kφ

k,0
j +Q(t). (2.1)
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2.2. Proposed Solution. Let k ∈ {1, 2, . . . ,K}. The goal of the constrained problem
is to solve for the Lagrange multipliers λ0

k and the displacements u0
i (t) so that each bin has

a mean atomic displacement vk. That is,

1
τ

∫ τ

0

∑
i∈B0

k

φki ui(t)dt− vk = 0.

Letting v = (v1, v2, . . . , vK), the method is to solve for the root of the equation

G(λ) = v − g(x,u,λ,φ),

where g(λ) is a vector-valued function depending on Verlet integration V V () so that

gk(λ) =
1
τ

∫ τ

0

φk · V V (x,u,λ,φ),

with acceleration for the Verlet method as shown in Equation (2.1).

2.3. Molecular Dynamics. In MD models the forcing function is only calculated
within a specified cut-off radius, analogous to the peridynamic model’s horizon. This com-
monality motivates further study and integration of molecular dynamic simulations in the
peridynamic framework. The first formulations of such problems were presented in [6], and
the converse approach, leading to a casting of peridynamics as an upscaling of MD, was
demonstrated by Seleson, Parks, Gunzburger, and Lehoucq in [7]. In both papers, the
Lennard Jones (LJ) inter-molecular potential function is considered, as is done in this work.
The LJ potential is defined

f(r) = 4ε
[(σ

r

)12

−
(σ
r

)6
]
, (2.2)

where r is the distance x−x′, for x, x′ ∈ {xi}ni=0, σ a length-scale parameter, and ε an energy-
scale parameter [3]. The parameters σ and ε are inherent to the atoms under consideration,
and the potential minimum occurs at rmin = 2

1
6σ, at which point Vmin = −ε. The value

rmin is the critical point of the system.
For the peridynamic framework, the linear approximation to the Lennard-Jones poten-

tial is considered. That is, C(r) = ∂f
∂r (r), where

∂f

∂r
(r) = −24

ε

σ2

[
7
(σ
r

)8

+ 26
(σ
r

)14
]
.

The choice of r is taken from the equilibrium configuration of the atoms, r = rmin.

3. Numerical Experiments.

3.1. Truncation Error. To understand how the algorithm performs, the order of error
associated with applying Simpson’s rule to the already-approximated, O(h2) displacements
is considered. By considering the local analysis for Simpson’s rule, the temporal integration
is shown to be consistent with the Verlet integration. Simpson’s scheme uses a three-point
Newton-Coates formula∫ b

a

f(x(t), t)dt ≈ P3(x, t) =
3∑
j=1

wjf(x(tj), tj),
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where wj are the weights associated with the Lagrangian basis. Thus, the error E is

E =
∫ b

a

f(x(t), t)− P3(x(t), t)dt.

Let (a, b) be any interval (tn−1, tn+1). For a given time step tn,

En =
∫ tn+1

tn−1

[f(x(t), t)− P3(x(t), t)]dt.

=
∫ tn+1

tn−1

f(x(t), t)− h

6
(P3(x(tn−1), tn−1) + 4P3(x(tn), tn) + P3(x(tn+1), tn+1)) .

Now, f(x, t) = u(x, t), and

∫ b

a

u(x(t), t)dt =
3∑
j=1

wju
h(x(tj), tj),

where uh(x(tj), tj) are approximated values of u obtained by Verlet integration. Thus

P3(x(t), t) =
3∑
j=1

[wjuh(x(tj), tj) +O(h2)].

Assuming proper continuity, the Taylor approximation for general f(x, t) at tn+1 is

f(x(tn+1), tn+1) = f(x(tn), tn) + h(ft(x(tn), tn)ẋ(tn))

+
h2

2
(
ftt(x(tn), tn)ẋ(tn)2 + ft(x(tn), tn)ẍ(tn)

)
+
h3

6
(
fttt(x(tn), tn)ẋ(tn)3 + 2ftt(x(tn), tn)ẋ(tn)ẍ(tn)

)
+
h3

6

(
ftt(x(tn), tn)ẋ(tn)ẍ(tn) + ft(x(tn), tn)

dx3

dt3
(tn)

)
,

and a similar result holds for f(x(tn−1), tn−1) by replacing h with (−h). Thus

En =
∫ tn+1

tn−1

f(x, t)−h
6

(6f(x(tn), tn) + (h− h)ft(x(tn), tn)ẋ(tn)

+ h2
[
ftt(x(tn), tn)ẋ(tn)2 + ft(x(tn), tn)ẍ(tn)

]
+O(h3))

=
∫ tn+1

tn−1

h

6
(h2
[
ftt(x(tn), tn)ẋ(tn)2 + ft(x(tn), tn)ẍ(tn)

]
+O(h3))dt

Therefore, if f ∈ C2×C2 and x ∈ C2, then Simpson’s approximation has O(h3) local error,
so that globally the method is O(h2), consistent with Verlet integration. One further order
of truncation can be obtained by adding in an interpolation point by leveraging midpoint
rule with the Simpson formula and assuming further continuity. However, this analysis
requires less of f and x and is enough to show that Simpson integration does not pollute
the calculations further.
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3.2. Stability Analysis. A critical component of numerical schemes is that they are
stable. To ensure stability of the Verlet integration, consider the primary forcing on the
adiabatic problem [9]. The force on node i is given by Equation (1.2),

müi =
∫
Hxi

C(xi, xj)(u(xj)− u(xi))dVxi , (3.1)

where C is the micromodulus function for node i and m its mass. Letting Hi be the indices
of xj ∈ Hxi and discretizing,

miüi =
∑

j∈Hi,j 6=i

Ci,ju
n
j Vxj −

∑
j∈Hi

Cij

uni Vxj , (3.2)

Assuming uniform mesh h = ∆t and letting Cij = 0 if xj /∈ Hxi ,

mi(un+1
i − 2uni + un−1

i )
h2

∑
j∈Hi,j 6=i

Ci,ju
n
j Vxj −

∑
j∈Hi

Cij

uni Vxj . (3.3)

Thus, the system has a mass matrix A corresponding to the second-order centered-difference
scheme applied to u and a stiffness matrix C corresponding to the linear approximation of
the forcing term. Due to the δ−horizon, the stiffness matrix will be banded and diagonally-
dominant. With the LJ potential, when the bonded materials are homogeneous this matrix
is also symmetric and positive semi-definite.

To understand the stability of the approximation scheme, let Unj = Bje
iωxjξn, where

Bj is a coefficient determined by the molecular properties of the jth node. Von Neumann
stability analysis as in [1] on 3.3 yields the following.

Bje
iωxjξn+1 = eiωxj (2Bjξn −Bjξn−1) +

ξnh2

mj

 ∑
k∈Hj ,k 6=j

Cjk(−Bjeiωxj +Bke
iωxk)


=⇒ ξ1 = 2ξ0 − ξ−1 +

h2

mj

 ∑
k∈Hj ,k 6=j

−Cjk +
Bk
Bj

Cjke
iω(xj−xk)


=⇒ ξ2−

2 +
h2

mj

 ∑
k∈Hj ,k 6=j

−Cjk + Cjk
Bk
Bj

eiω(xj−xk)

 ξ + 1 = 0.

This equation has roots

ξ =
2 + h2

mj

(∑
k∈Hj ,k 6=j(

Bk
Bj
eiω(xj−xk) − 1)Cjk)

)
2

±

√
2 + h2

mj

(∑
k∈Hj ,k 6=j(

Bk
Bj
eiω(xj−xk) − 1)Cjk

)
− 4

2

=
2 + h2

mj

(∑
k∈Hj ,k 6=j(

Bk
Bj
eiω(xj−xk) − 1)Cjk)

)
2

±

√
−2 + h2

mj

(∑
k∈Hj ,k 6=j(

Bk
Bj
eiω(xj−xk) − 1)Cjk

)
2

The following simplifying assumptions are now made.
1. The material is homogeneous; that is, the atoms are the same, and so the propor-

tional amplitude Bk
Bj

= 1.
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2. C is a symmetric matrix of nonnegative off-diagonal entries.
Now, consider the case when the atoms are at their highest vibrational frequency, when

they are exactly out-of-phase. The forcing term is then

h2

m

 ∑
k∈Hj ,k 6=j

(eiω(xj−xk) − 1)Cjk

 =
−2h2

m

 ∑
k∈Hj ,k 6=j

Cjk

 .

Then,

ξ =

1− h2

mj

∑
k∈Hj ,k 6=j

Cjk

±
√

2− 2h2

m

∑
k∈Hj ,k 6=j Cjk

2
i.

To obtain the critical value hc so that | ξ |= 1, set Re(ξ) = 1.

h2
c

mj

∑
k∈Hj ,k 6=j

Cjk = 1

=⇒ hc =
√

mj∑
k∈Hj ,k 6=j Cjk

.

Therefore for all h < hc, the growth factor | ξ |< 1, as desired.

3.3. Experiments.

3.3.1. Summary of Findings. The system of equations and solution method is found
to converge to the correct solution for displacements when the magnitude of the thermal
forcing is at or below that of the constraint, and further analysis also suggests that the
solvability of the system is dependent on the relation of the order of magnitude of the
constraints with the number of atoms in each bin.

The proposed method is a discrete approximation that uses Python’s fsolve, which
is a modified Powell, dogleg optimization technique [2]. The dogleg method is a trust-
region method that combines a steepest-descent step with a step toward the Cauchy Point,
constrained to a region ∆. The model function m(p) is the quadratic approximation to the
function being solved, where the gradient is taken with respect to λ [5]. Now,

uni =
un+1
i + un−1

i

2
+ üni

h2

2
+O(h4).

Replacing this approximation into the constraint equation,

f(x, u, v, λ, φ)k = vk − 1
τ

∫ τ

0

φk
un+1
i + un−1

i

2
+ üni

h2

2
+O(h4)

= vk − 1
τ

∫ τ

0

φk
un+1
i + un−1

i

2
+
∫
j∈Hi

C0
ij(uj − ui)

+Q(t) + λk
∑

j∈Hi,B0
k′

φk
′
j +O(h4).
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Now, ∇λk′′ fk =
∑
ui∈Bk0 ,j∈Hi,B0

k′
φk
′
j , and therefore ∇2

λf
k = 0. Thus

m(p)k = vk − 1
τ

∫ τ

0

φk
un+1
i + xn−1

i

2
+
∫
j∈Hi

C0
ij(uj − ui)

+Q(t) + λk
∑

j∈Hi,Bk
′

0

φk
′
j +O(h4) +

∑
j∈Hi,Bk

′
0

φk
′
j p,

where p = τpC , with pC the Cauchy Point pC = ∆ ∇λf
‖∇λf‖ . Since ∇2

λf
k = 0, in this algorithm

τ = 1. Let Q(t) = γ cos(t). Fix k ∈ {1, 2, . . . ,K}. The solver minimizes

m(p)k = vk − 1
τ

∫ τ

0

un+1
i − un−1

i

2
+
∑
j∈Hi

C0
ij(uj − ui)

+ γ cos(t)dt+ λk
(

1 + ∆
1

‖∇λ‖f

) ∑
j∈Hi,Bk

′
0

φk
′
j dt

Setting m(p)k = 0,

γ

τ

∫ τ

0

cos(t)dt− vk =
∫ τ

0

un+1
i − un−1

i

2
+
∑
j∈Hi

C0
ij(uj − ui)n

+ λk
(

1 + ∆
1

‖∇λ‖f

) ∑
j∈Hi,Bk

′
0

φk
′
j .

Bounding cos and applying triangle inequality,

|γ − vk| ≤ γ

τ

∫ τ

0

cos(t)dt− vk.

=⇒ |γ − vk| ≤ 1
τ

∫ τ

0

un+1
i − un−1

i

2
+
∑
j∈Hi

C0
ij(uj − ui)n

+ λk
(

1 + ∆
1

‖∇λf‖

) ∑
j∈Hi,Bk

′
0

φk
′
j .

Simpson’s method is employed to approximate the temporal integral. Letting

f̃(u,C0, t) =
un+1
i − un−1

i

2
+
∑
j∈Hi

C0
ij(uj − ui)n,

1
τ

∫ τ

0

f̃(u,C0, t) =
h

3τ

N/2∑
j=1

[
f̃(u,C0, t2j−2) + 4f̃(u,C0, t2j−1) + f̃(u,C0, t2j)

]
+O(h2).

The ui are O(10−9); the C0
ij are O(10−14); and τ = Nh. Thus, for the level set

| γ − vk |= λk
(

1 + ∆
1

‖∇λf‖

) ∑
j∈Hi,Bk

′
0

φk
′
j + l.o.t. ( O(10−7))
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Consider the parenthetical. ∇λf ≤ ‖∇λf‖. Now,

‖∇λf‖ = h2 max
k

∑
i∈Bk0 ,j∈Hi

φkj .

The employed algorithm uses MINPACK, which approximates the trust region size ∆0 =
factor‖D0λ̃0‖, where D0 is a diagonal matrix, by default the norm of the columns of the
Jacobi, and λ̃0 is the supplied initial point [4]. It can be shown that the Jacobi of this
system is the element-wise sum of the components of the nodal basis acting on a particular
node; thus each component k ∈ {1, 2, . . . ,K}, of λ̃0 is scaled by a factor of

∑10n

j=1 δ̃j10−n,
where δ̃j < 2δ is the number of nodes acting on atom j.

If λ̃0 = 0, then ∆0 = factor. In this report default parameters were used, so ∆0 =
100‖λ̃0D0‖. Recalling the linear problem, the initial value λ0 scales proportionally with v̄
and inversely with φ. Fix n > 0. If v̄ = 10−α and a bin has 10n atoms, experimentally, λ0

was found to scale as 10−α10n. Let ‖λ0‖ = C10−α+n, where C ∈ (0, 10). Suppose each bin
has 10n atoms.

100
∆0

‖∇λf‖
= 100

‖C10−α+nD0‖
‖∇λf‖

≤ 100
‖λ̃0‖‖D0‖
‖∇λf‖

≤ 100‖λ̃0‖
= C102−α+n.

Thus

| γ − vk |≈
(
1 + C102−α+n

) ∑
j∈Hi,Bk

′
0

φk
′
j λk + l.o.t.,

so that

| γ − vk |
(1 + C102−α+n)

∑
j∈Hi,Bk

′
0
φk
′
j

≈ λk.

Thus the ratio

ρk =
| γ − vk |

(1 + C102−α+n)
∑
j∈Hi,Bk

′
0
φk
′
j

determines the solvability of the system. If ρk > 1, then the problem is ill-conditioned; thus
this imposes conditions on the thermal forcing, the constraints, the number of atoms per
bin, and the δ-horizon.
Consider some examples. Suppose n = 1 and take the first deviation such that γ > vk.

1 + C102−α+n = 1 + C101−α ≈ 1,

since α > 1. If all elements in the nodal horizon δ = 6 were included,

ρk =
| 10−α+1 − 10−α |∑6

i=1O(10−1)

≈ 100
60

=
10
6
.
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Thus ρk indicates this system is poorly conditioned, explaining the behavior observed in
the 10-bin systems (Table 3.4) with γ one order of magnitude above the constraint. On the
other hand, when γ is of the same order of magnitude as the constraint or one degree less,
stable behavior is expected and observed. With the same fixed α > 1, the associated ρk are

ρk =
| 10−α − 10−α |∑6

i=1O(10−1)

= 0,

and

ρk =
| 10−α−1 − 10−α |∑6

i=1O(10−1)

≈ 10−α+1

6
≤ 1, (α > 1).

In addition, the dependence on the scale of atoms per cluster can further be elucidated
by this ρk. Comparing the results from the (10,4) and the (100,10) systems (Table 3.3),
the magnitude of the percent error increases with more atoms per bin, as the ratio would
predict. To further verify this relationship, experiments were run with eleven bins of ten
atoms; findings are consistent with the result that the dependence is on the number of atoms
per bin and not the total number of atoms. The results for particular γ are shown in Table
3.4. Now suppose n = 2, and let γ = 10−β .

ρk =
| 10β − 10−α |

(1 + C104−α)
∑
j∈Hi,Bk

′
0
φk
′
j

≈ | 10β − 10α |
104−α2δ10−2

=
102−α | 10β − 10−α |

2δ

Thus for α = 1, ρk = 10(10β−10−1)
2δ , so that β ≤ 1 =⇒ ρk < 1. If α = 2, then β ≤ 0 =⇒

ρk < 1. These conditions are consistent with the results, shown in Table 3.1 below.

Table 3.1: Percent Error. 2 Bins of 100 atoms.

Bin Bi; v̄ = 1e-1m.

i γ = 10−2 γ = 10−1 γ = 1
1 -0.0022% -0.1582% 9.834%
2 -0.0022% -0.1582% 9.834%

Bin Bi; v̄ = 1e-2m.

i γ = 10−1 γ = 1 γ = 10
1 -0.1582% -0.085% -1299%
2 -0.1582% -0.085% 7489%

3.3.2. Set-up and Results. Arguably the most used element for experimental simu-
lations in molecular dynamics is Argon. Following convention, experiments were performed
in 1D on systems of these atoms, setting σ = 3.405 Åand ε = 1.654e− 21K [12]. From the
stability analysis, C = max eig(Cij); and h = 0.25hc. Simpson’s integration is employed
for N = 100 time steps, and the initial parameter for the λ is that obtained by solving the
static problem, equation (1.8). The same displacement is prescribed across bins. That is,
vk = v̄ for each k ∈ 1, 2.

With a sinusoidal thermal forcing, g(γ, t) := γcos(t), Python’s fsolve [2], a modified-
Powell root-solver using MINPACK’s hybrd and hybrj algorithms, does not converge to a
solution that has the prescribed displacements v̄ for consistent γ across different scales. The
following table shows a summary of the experimental results.
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Table 3.2: Numerical Bounds on Amplitude, 2 binned systems.

Prescribed displacement Maximum Amplitude
1 1

10−2 10−2

10−4 10−4

10−6 10−6

10−8 10−8

Table 3.3: Percent Error v̄ = 1e-2 m

γ 2x4; B1 2x4; B2 10x4; B1 10x4; B2 100x10; B1 100x10; B2

10−5 -0.00% -0.000% 0.000 % 0.000% 0.001% 0.001%
10−4 0.001% 0.001% -0.008% -0.008% -0.010% -0.008%
10−3 0.073% 0.073% -0.026% -0.026% 0.041% 0.073%
10−2 0.132% 0.134% 0.111% 0.111% 0.064% 0.393%
10−1 -1.84% -1.84% 5.28% 5.25% 27.4924% 18.7670%
10 -15.3% -15.5% -39.9% -39.2% -147 % -571 %

Table 3.4: Percent Error of Bin Bi for 11 bins of 10. O(φ) = 10−1.

v̄ = 1e-2m.

i γ = 10−2 γ = 10−1 γ = 1
1 -0.456% 1.590% 457.8%
2 -0.393% -0.056% -742.7%
3 -0.425% -0.922% -324.8%
4 -0.369% -0.961% 598.6%
5 -0.348% -1.654% 244.4%
6 -0.448% -0.394% -136.6%
7 -0.403% 2.751% -1397.8%
8 -0.320% 5.024% -56.11%
9 -0.551% 3.464% -972.6%
10 -0.829% -0.712% -480.7%
11 -0.956% -4.188% -664.3%

v̄ = 1e-4 m.

i γ = 10−5 γ = 10−4 γ = 10−3

1 0.0579% 0.5436% -6.4734%
2 0.0334% 0.6717% -4.0408%
3 0.0174% 0.5630% -1.9191%
4 0.0082% 0.3927% -1.6866%
5 0.0011% 0.4406% -1.6866%
6 0.0037% 0.5566% -1.6866%
7 0.0253% 0.4405% -1.6866%
8 0.0243% 0.3928% -1.6224%
9 -0.0118% 0.5630% -0.3267%
10 -0.0371% 0.6717% 1.8266%
11 -0.0378% 0.5436% 4.1905%

4. Future Work. Forward directions for this project include an alternative formu-
lation of the problem and further integration of the current scheme to multiple levels, a
multiscale approach.

At the base, the problem could be cast as an augmented Lagrangian, and instead of
iterating once to obtain the Lagrange multipliers, one could iterate over both the result-
ing displacements and the extracted Lagrange multipliers until the displacements are as
desired. This method would be an alternating directions method; at each step, both the
displacements and the Lagrange multipliers would be obtained.

Secondly, the scope of the problem could be generalized to multiple levels as described in
Section 1.2. The next-level forcing terms C1 can be obtained from Equation (1.9); they are
the sum of the found Lagrange multipliers acting on a particular bin, and the interatomic
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forces at the fine level and the general thermal forcing are incorporated into those values.
The proposed method may thus be repeated so that the bins Bk0 are aggregated in the same
way as the u0; they are the coarse-grained approximation. That is, u1

k = Bk0 with all the
properties associated to it, so there are N1 = K0 total “atoms.” in the next level. Thus,
this method has strong potential for successive reduction in scale of MD simulations.

Acknowledgments. The authors would like to thank Sandia National Laboratories
for hosting the internship, the Air Force for funding this research, and the National Sci-
ence Foundation (NSF) and NSF Graduate Research Fellowship Program for academic and
research support under grant DGE-11-44155.

REFERENCES

[1] S. Delahaies, Numerical Solutions for Partial Differential Equations. MAT 3015, University of Surrey.
[Online; accessed 2016-07-28].

[2] E. Jones, T. Oliphant, P. Peterson, and et al, SciPy: Optimization and Root-finding., 2001–2016.
[Online; accessed 2016-07-28].

[3] J. Li, Basic Molecular Dynamics, in Handbook of Materials Modeling, Springer, 2005, pp. 565–588.
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INTERFACE BASED CONDUCTIVITY: AN FEM APPROXIMATION OF
ELECTRICAL CONDUCTIVITY IN MULTI-MATERIAL CELLS

LOGAN T. MEREDITH∗, CHRISTOPHER M. SIEFERT† , AND RICHARD M. J. KRAMER‡

Abstract. Finite element codes numerically compute solutions to partial differential equations by par-
titioning the domain into a discrete mesh. The calculation of current density in elements of the mesh via
Ohm’s Law requires a reasonably accurate value for the conductivity of the element. However, in elements
that contain multiple materials, especially those with wildly varying material conductivities, a näıvely cal-
culated element conductivity can quickly lead to large current densities through insulators. We describe a
model for element conductivities in multi-material cells that combines the anisotropy of tensor conductivi-
ties with intuition from simple resisting circuits and avoids the problem of spurious current densities. We
then illustrate the efficacy of this model by implementing it in the magnetohydrodynamics simulation code
ALEGRA with a verification problem.

1. Introduction. ALEGRA is a finite element physics simulation code used heavily
at Sandia [10]. A significant portion of the code is dedicated to simulating magnetohydro-
dynamics (MHD), and this is the portion with which we concern ourselves here. Current
density is of special importance in some situations, since it is the primary vehicle through
which electrical heating occurs. Because elements are the fundamental carriers of material
volume in ALEGRA, current density is stored as an elemental variable at the centroid of
each element in the mesh.

The ALEGRA code was written to calculate current density J from the magnetic field
H according to Ampère’s Law, essentially given by

J = ∇×H. (1.1)

This calculation, however, is problematic. The magnetic flux density B is the fundamental
variable used by ALEGRA, not the magnetic field. A more direct way to calculate the
current density is via Ohm’s Law, given by

J = σE, (1.2)

where σ is the conductivity and E is the electric field.
New complications arise with our adoption of Ohm’s Law. Although the electric field

is known at element centers, the value of the conductivity is questionable in elements which
contain more than one material, since a single value must ideally encapsulate qualities of each
material. Although mesh refinement is indeed a solution to this problem, it is not typically
feasible when materials are inserted directly into a mesh. Previously, the ALEGRA code
computed conductivity of multi-material cells by weighting each material’s conductivity σi
by the fraction of the volume in the cell that the material occupies φi, as shown by

σeq =
M∑
i=1

φiσi, (1.3)

where M is the number of materials in the element. Multi-material cells are typically rare
enough that this is very accurate for sufficiently fine grids; in fact, our revised version of the
conductivity calculation can reduce to this volume-averaged model when there is an electric
field tangent to the material interfaces, those interfaces are all parallel, and the interface

∗University of Rochester, logan.meredith@rochester.edu
†Sandia National Laboratories, csiefer@sandia.gov
‡Sandia National Laboratories, rmkrame@sandia.gov
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Fig. 1.1: A multi-material cell containing an insulator between two conductors. The volume
averaged conductivity would almost ignore the conductivity of the insulator.

normals are eigenvectors of the material conductivities; that is, an electric field tangent to
an interface would see the materials as resistors in parallel, since parallel conductivities add
arithmetically. Equation (1.3), however, is insufficient in an important and common class
of problems.

Suppose there exists a single element with three materials: an insulator between two
conductors, as shown in Figure 1.1. For simplicity, we assume that the conductors have the
same conductivity. Since the conductivity of the insulator σI is small compared to that of
the conductors σC , its contribution to the conductivity of the element is negligible. The
formula approximately reduces to the sum of the conductivities of the conductors scaled
by their volume fractions. Now consider an electric field passing normal to the material
interfaces. Intuitively, we expect there to be very little current density, since the insulator
acts as a sort of barrier. But our previous computation of the element conductivity seems
to suggest that the insulator has almost no bearing on the current density in the element.

We present a solution to this problem that takes the orientation of the material interfaces
into account. In short, an electric field passing normal to the interface will experience
an equivalent conductivity as though the materials were in series, and a tangent field, in
parallel. This correctly adjusts the conductivity to give us the result we expect in the above
and similar examples. We anticipate the conductivity revision to perform more accurately,
and we perform verification analysis to illustrate this.

2. Further Justification for Ohm’s Law. Before we present our formulation for ele-
ment conductivity, we should quickly expand upon our reasons for changing the computation
of the current density.

2.1. An a priori perspective. As stated above, the former computation by (1.1)
relies on a variable that is derived from a more fundamental variable. This was perhaps an
understatement; in fact, the magnetic field is many degrees of separation from the magnetic
flux density, and ALEGRA utilized the following chain of calculations to derive the current
density, illustrated here:

BFLUX→ BE→ BF→ H→ HCIRC→ JFLUX→ JE

Here, BFLUX refers to the magnetic flux through faces, BE represents the magnetic flux
density interpolated at element centers, BF is the magnetic flux density tangent to faces
on boundaries, H is the magnetic field computed at nodes, HCIRC is the component of the
magnetic field parallel to edges, JFLUX is the current flux through faces, and JE represents
the current density interpolated at element centers. The arrows correspond to calculations of
varying degrees of complexity, and many such calculations incur a significant interpolation
error. The current density derivation through Ohm’s Law, meanwhile, requires only one
calculation. Suppose that the electric field and the magnetic flux density are equally well
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defined across the mesh. The current density is likely to be substantially less accurate with
Ampère’s Law due to loss of numerical precision alone.

2.2. Initial qualitative exploration. We begin with a qualitative comparison of the
Ohm’s Law and Ampère’s Law methods of computing current density. Figure 2.1 shows
the results of an ALEGRA regression test rendered in ParaView [7] for a problem called
“potaslot,” which consists of a coaxial cable whose core and shield are connected at the
back.

Fig. 2.1: Results from “potaslot” regression test. Left: Ohm’s Law. Right: Ampère’s Law.
A brighter red corresponds to high current density, and deeper blue to low.

The orange-red regions in the centers and around the edges in Figure 2.1 correspond
to the conductor, and the blue regions between them correspond to the insulator. The two
sides are on the same scale to illustrate the differences. Ideally, this insulator carries a few
orders of magnitude less current, and so we would expect it to be a very deep blue. However,
in the Ampère’s Law simulation, there is a not insignificant current density appearing in the
insulator where it should not exist. This effect was commonly encountered in problems with
large conductivity drops across boundaries. On the left, however, we can see that Ohm’s
Law does not seem to exhibit this phenomenon; the current density in the insulator was
calculated around 8× 108 A/m2 with Ohm’s Law and 1.2× 1015 A/m2 with Ampère’s Law.
We therefore continue on to a more thorough verification.

2.3. Verification. Both versions of the code were run on a suite of verification prob-
lems in order to confirm that (1.2) would indeed perform better than (1.1). For brevity, we
describe and display the results of only one of these problems, along with a summary of the
suite as a whole.

2.3.1. Problem description and solution. The problem we will look at is referred
to as “transient perm mag.” The problem domain consists of the 3-cell [0, 1]3 with a finite
electrical conductivity σ upon which we impose the boundary conditions

E(x, y, z, t) =

 e2t (ex + e−x) (ey − e−y)
−e2t (ex − e−x) (ey + e−y)

0


on the boundaries along with an initial permanent magnetization across the mesh of

M0(x, y, z) =
ex + ey

µ0
k̂
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and an initial magnetic flux density of

B0(x, y, z) =
[
ex + ey +

(
e−x + ex

) (
e−y + ey

)]
k̂

for (x, y, z, t) ∈ [0, 1]3× [0, 10−4] and µ0 = 4π×10−7. In addition, we define the conductivity
of the mesh as σ = 1

4π10−7 . The analytic solution for the resulting current density throughout
the block is

J(x, y, z, t) =

 σe2t (ex + e−x) (ey − e−y)
−σe2t (ex − e−x) (ey + e−y)

0

 .
The metric that we will use to gauge the improvements afforded by (1.2) is the “current

tally.” This is a measure of the total current flowing through a sideset, and is computed
internally by ALEGRA. The sideset through which we will tally the current is a plane at
x = 1

2 . The analytic solution is relatively straightforward to derive, and is given by∫ 1

0

∫ 1

0

Jx|x= 1
2
dy dz = 2σ(e2 − 1)e2t−1 cosh

1
2
.

In order to input this problem in ALEGRA, we construct a mesh with a variable number
of elements in each direction. Starting with two elements, we refine the mesh by doubling the
number of elements with each iteration. This should ideally result in an order 2 convergence
rate for the current density onto our analytic solution. We will run this simulation using
both (1.2) and (1.1) and compare the computed current tally at time t = 10−4 s to our
analytic solution to see which formulation converges more quickly and more accurately.

2.3.2. Results. Figure 2.2 shows a log-log plot of the current tally results from ALE-
GRA against the number of elements in each direction in order to track how each formulation
converges toward the analytic solution as the mesh is refined. The black line represents the
analytic solution. These results were all computed at t = 10−4 s. We also see a table that
displays the relative error of each calculation with its convergence rate in parentheses.

Number of Elements Ampère Ohm
2 3.8925e-01 (—) 6.5942e-02 (—)
4 1.7852e-01 (1.12) 1.6817e-02 (1.97)
8 9.0327e-02 (0.98) 4.2764e-03 (1.98)

16 4.6071e-02 (0.97) 1.0784e-03 (1.99)
32 2.3346e-02 (0.98) 2.7061e-04 (1.99)

Fig. 2.2: Results of the ALEGRA current tally in the transient perm mag problem on a log-
log scale and table with relative errors and rates of convergence for both current calculations.
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It is clear from Figure 2.2 that Ohm’s Law both converges more quickly and presents a
more accurate solution. In fact, Ampère’s Law does not converge at the expected 2nd order
rate for this problem. Based on the results from this test, we are justified in continuing our
implementation of Ohm’s Law to a more comprehensive set of tests, which we describe in
the following section.

2.3.3. Summary. Here we continue our verification analysis by running simulations
with both Ohm’s Law and Ampère’s Law on a small suite of verification tests. Each of these
tests is outputting a current tally on its finest mesh in the same fashion as before. In Figure
2.3, we plot the ratio of the Ohm’s Law error to the error in Ampère’s Law on a logarithmic
scale for each test. A bar below 1 indicates that Ohm’s Law resulted in a smaller error;
above 1, and Ohm’s Law caused a larger error.

Fig. 2.3: Ohm’s Law error divided by Ampère’s Law error. Values less than one indicate
superiority of Ohm’s Law for that problem, and greater than one indicate superiority of
Ampère’s Law. Problems driven by electric field boundary conditions are in blue, by mag-
netic field conditions in green, and by both in red.

We can quickly see that some problems fare better using the older Ampère’s Law for-
mulation. Barring the nosourceMMS problem family, it was observed that these problems
tended to be driven by boundary conditions on the magnetic field (in green), whereas most
problems in which Ohm’s Law worked better were driven by electric field boundary condi-
tions (blue) or both electric and magnetic fields (red). If the magnetic field is well defined,
it is possible to immediately use Ampère’s Law. However, when the electric field is defined,
or when electric field boundary conditions are mixed with magnetic field boundaries, Ohm’s
Law provides a more direct computation of current density. Indeed, in some cases, Ohm’s
Law was several orders of magnitude more accurate relative to Ampère’s Law.

3. Interface Based Conductivity Formulation. Consider two materials in an el-
ement. Ideally, the component of the electric field tangent to the material interface would
see the two materials as though they were two parallel resistors in a circuit, and the normal
component would see the conductivity of the two materials as though they were in series. In
the example with the insulator between two conductors described in Section 1, this would
stunt the current density passing through the insulator, but allow current to flow along the
interfaces, which is physically correct. Such anisotropy can be realized with tensor conduc-
tivites. In this section, we will provide some necessary background for implementing the
algorithm in ALEGRA and a relation describing the model itself.
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3.1. Background. Upon encountering a multi-material cell, ALEGRA constructs a
material priority list, ordering the materials such that the interfaces will be cleanly con-
structed. It then proceeds to reconstruct the interfaces. Interface reconstruction algorithms
are an expansive subject and various examples can be seen in [1, 3, 5, 8]. We will not discuss
them here, but it is vital to understand the structure of the completed priority lists.

Consider an element with three materials, as shown in Figure 3.1. An interface is
constructed between the material of highest priority and the remainder of the cell. We
are most interested in the unit normal of this interface, which is computed at the interface
centroid. After this, the fraction of the element containing that material is ignored, and an
interface is constructed between the material of second highest priority and the remainder.
In the end, if there are M materials, there are M − 1 interfaces. Note that the interface
between the materials of lowest and second lowest priority is the only interface that is
constructed between two whole materials.

Fig. 3.1: An example of ALEGRA’s interface reconstruction scheme. The green material
has the highest priority (1), followed by blue (2), then red (3). Note that there is no n3;
this is because there are no remaining materials after red in the priority list.

Our work is loosely inspired by the work of White and Solberg in [12], itself inspired
by work on uniaxial perfectly matched layers, on which there exists a wealth of literature,
as in [2, 4, 9, 11]. Their solution to the mixed element issue was to rotate the interface
normals onto the x-axis, then use the same rotation transformation to rotate the conductivity
tensors. At that point, it is relatively straightforward to harmonically sum the entries of the
first row of the tensors and arithmetically add the remainder. Attention must be paid to
avoid destroying tensor symmetry at this point, and this work did not progress to consider
nondiagonal tensors. We present a solution that uses projections rather than rotations.
It can be shown that, if implemented properly, the rotation method is equivalent to the
projection method, which we present in the following section.

3.2. The model. For an ideal equivalent tensor conductivity in an element containing
two materials that is aware of the material interface and incorporates the changes we have
discussed in Sections 1 and 3, we submit the following formula. Let n be the unit normal to
the material interface, let φ1, φ2 be the volume fractions of the two materials, and let σ1, σ2

be their respective electrical conductivities. Note that our model is valid for individual
material conductivities defined both as tensors and as scalars; the result, however, is always
a tensor. In addition, we define an arithmetic conductivity sum

σT = φ1σ1 + φ2σ2 (3.1)

and a harmonic conductivity sum

σN =
(
φ1σ

−1
1 + φ2σ

−1
2

)−1
(3.2)
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where the two subscripts T and N stand for “tangent” and “normal,” respectively. A first
attempt to construct an interface-aware conductivity might look something like

σeq
?= σT

(
I − nnT

)
+ σNnn

T . (3.3)

However, this does not guarantee that the resulting conductivity tensor will be symmetric.
A method for symmetrizing the product of two symmetric tensors A,B is given by

AB ≈ 1
2

(AB +BA). (3.4)

With (3.4) in mind, we revise (3.3) and posit that the equivalent element conductivity should
be calculated as

σeq = σT +
1
2
[
(σN − σT )nnT + nnT (σN − σT )

]
. (3.5)

In order to compute the conductivity of an element with more than two materials, we
will take advantage of the material priority list and the interface reconstruction. Recursing
downward from the material of lowest priority to the material of highest priority (since the
priority list is stored with the index of the highest priority at 1), we will essentially use (3.5)
between each material interface until we have iterated over every material. First, let M be
the number of materials in the cell, let ni be the normal to the material interface between
materials of priorities i and i + 1, let σi be the electrical conductivity of the material of
priority i, and let φi be the volume fraction which the material of priority i occupies. For
compactness, we also define a cumulative volume fraction

κi =
M∑

j=M−i+1

φj (3.6)

which is constructed such that κM = 1. Now we can define the element conductivity σeq
recursively as follows:

a1 = σM ,

ak = κ−1
k (φM−k+1σM−k+1 + κk−1ak−1)

− 1
2
κ−1
k (φM−k+1σM−k+1 + κk−1ak−1)nM−k+1n

T
M−k+1

+
1
2
κk
(
φM−k+1σ

−1
M−k+1 + κk−1a

−1
k−1

)−1
nM−k+1n

T
M−k+1

− 1
2
κ−1
k nM−k+1n

T
M−k+1 (φM−k+1σM−k+1 + κk−1ak−1)

+
1
2
κknM−k+1n

T
M−k+1

(
φM−k+1σ

−1
M−k+1 + κk−1a

−1
k−1

)−1
,

σeq = aM . (3.7)

Note that for M = 2, (3.7) reduces to (3.5). Indeed, this formula was derived by repeated
application of (3.5). It can be seen that the formula takes the combined conductivity of
the last two materials in the priority list, then treats that chunk as a single material and
repeats the process with the next material. In the end, we have combined every material in
the element into a single chunk.
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3.3. Properties of interface based conductivity. Here we will outline some prop-
erties of the model that are crucial to its usefulness.

Property 3.3.1 (Symmetry). σM is symmetric.
It is easy to see why this would be the case. Our construction of σM consists solely of

scalar multiplication, element-wise addition, and symmetrized tensor multiplication, all of
which are symmetry-preserving operations.

Property 3.3.2 (Multiple instances of the same material preserve the material’s con-
ductivity). Let M be the number of materials in the element. If

σ1 = σ2 = · · · = σM ,

then σeq = σ1.
An ALEGRA user would expect that an element populated wholly by materials of

the same conductivity has the same conductivity as its constituents. Our model would
have limited usefulness without this fact, and would in fact break down in the surprisingly
common situation of inserting two instances of the same material with different priorities
into the same element.

Proof. First we must prove that ai = σ1 ∀ i ∈ {1, 2, . . . ,M}. The proof is by induction.
Note that a1 = σ1 by our hypothesis. Now suppose that ak−1 = σ1. Then, using (3.7), we
get

ak = κ−1
k (φM−k+1σ1 + κk−1σ1)

− 1
2
κ−1
k (φM−k+1σ1 + κk−1σ1)nM−k+1n

T
M−k+1

+
1
2
κk
(
φM−k+1σ

−1
1 + κk−1σ

−1
1

)−1
nM−k+1n

T
M−k+1

− 1
2
κ−1
k nM−k+1n

T
M−k+1 (φM−k+1σ1 + κk−1σ1)

+
1
2
κknM−k+1n

T
M−k+1

(
φM−k+1σ

−1
1 + κk−1σ

−1
1

)−1

= σ1 +
1
2

(σ1 − σ1)nM−k+1n
T
M−k+1 +

1
2
nM−k+1n

T
M−k+1 (σ1 − σ1)

= σ1

from which it immediately follows that σeq = aM = σ1. �
In Section 1, we alluded to the fact that the interface-based conductivity model would

reduce to the deprecated volume averaged model in the case where the electric field was
tangent to the material interfaces, those interfaces were all parallel, and the interface normals
were eigenvectors of the conductivity tensors. We present and prove that fact here.

Property 3.3.3 (Conductivities add arithmetically with parallel interfaces and tangent
electric fields). Let M be the number of materials in the element, and let E ∈ R3suchthatE ·
n1 = 0. If n1 = n2 = · · · = nM−1 and n1 is an eigenvector of σi ∀ i ∈ {1, 2, . . . ,M}, then
σeqE =

∑M
j=1 φjσjE.

The hypotheses for this property may seem overly stringent, but they represent a rela-
tively common class of problems. For example, a problem with laminated sheets of materials
aligned with a coordinate plane and diagonal conductivity tensors, as in [6, 13], satisfies all
but the condition on the electric field.

Proof. We must first show that n1 is an eigenvector of each ai. This can be done
through induction. Since a1 = σM , n1 is an eigenvector of a1 by hypothesis. Suppose that
n1 is an eigenvector of ak−1. Let ak−1n1 = λk−1n1 and σM−k+1n1 = γk−1n1 for some
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λk−1, γk−1 ∈ R. Using (3.7), we get

akn1 = κ−1
k (φM−k+1σM−k+1 + κk−1ak−1)n1

− 1
2
κ−1
k (φM−k+1σM−k+1 + κk−1ak−1)n1n

T
1 n1

+
1
2
κk
(
φM−k+1σ

−1
M−k+1 + κk−1a

−1
k−1

)−1
n1n

T
1 n1

− 1
2
κ−1
k n1n

T
1 (φM−k+1σM−k+1 + κk−1ak−1)n1

+
1
2
κkn1n

T
1

(
φM−k+1σ

−1
M−k+1 + κk−1a

−1
k−1

)−1
n1

= κ−1
k (φM−k+1γk−1 + κk−1λk−1)n1

− 1
2
κ−1
k (φM−k+1γk−1 + κk−1λk−1)n1

+
1
2
κk
(
φM−k+1γ

−1
k−1 + κk−1λ

−1
k−1

)−1
n1

− 1
2
κ−1
k (φM−k+1γk−1 + κk−1λk−1)n1

+
1
2
κk
(
φM−k+1γ

−1
k−1 + κk−1λ

−1
k−1

)−1
n1

= κk
(
φM−k+1γ

−1
k−1 + κk−1λ

−1
k−1

)−1
n1

which shows that n1 is an eigenvector. We will now show that

κiaiE =
M∑

j=M−i+1

φjσjE ∀ i ∈ {1, 2, . . . ,M}.

Again, the proof is by induction. Note that κ1a1 = φMσM by construction, and so κ1a1E =
φMσME =

∑M
j=M φjσjE. Now suppose that

κk−1ak−1E =
M∑

j=M−k+2

φjσjE.

Since E · n1 = 0, n1n
T
1 E = 0. We will also use the fact that if v is an eigenvector of a
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symmetric tensor A, then AvvT = vvTA. With (3.7), we have

κkakE =
(φM−k+1σM−k+1 + κk−1ak−1) E

− 1
2

(φM−k+1σM−k+1 + κk−1ak−1)n1n
T
1 E

+
1
2
κ2
k

(
φM−k+1σ

−1
M−k+1 + κk−1a

−1
k−1

)−1
n1n

T
1 E

− 1
2
n1n

T
1 (φM−k+1σM−k+1 + κk−1ak−1) E

+
1
2
κ2
kn1n

T
1

(
φM−k+1σ

−1
M−k+1 + κk−1a

−1
k−1

)−1
E

= (φM−k+1σM−k+1 + κk−1ak−1) E

=

φM−k+1σM−k+1 +
M∑

j=M−k+2

φjσj

E

=
M∑

j=M−k+1

φjσjE.

Finally, we notice that σeqE = aME = κMaME =
∑M
j=1 φjσjE. �

These two properties exemplify the flexibility of the interface based conductivity model
in that it reduces to more familiar models in special circumstances: namely, the circum-
stances in which the older models excel.

4. Verification. A purely mathematical justification does not suffice for full scale
implementation. In this section, we incorporate the interface based model in ALEGRA and
run a test problem in order to more fully illustrate the superiority of our new model.

4.1. Problem description. The problem we will use here is known as “ser par.”
It consists of two elements, one comprised wholly of a conductor and the other of half
conducting and half insulating materials, with conductivities σC and σI respectively, as
shown in Figure 4.1.

Fig. 4.1: A schematic of the ser par problem domain. The solid lines denote the element
boundaries and the dashed line represents the material interface. Note that σC refers to the
conductor and σI refers to the insulator.

The purpose of the element on the left is to ensure that the interface is reconstructed
as we described, since the interface reconstruction algorithm relies on information from
surrounding elements to make inferences about the proper location of the boundaries.

In order to drive the simulation, we couple the mesh to an external circuit. In particular,
we can choose for the circuit to be configured such that the two materials act either in serial
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or in parallel. This is done by coupling a constant potential of V0 to the left or the bottom
of the mesh and a constant potential of 0 to the right or top, respectively.

In the serial case, the current density J is expected to be constant throughout the mesh,
given by

J =
2V0

3
σC

+ 1
σI

ı̂. (4.1)

In the parallel version, the current should differ between the two elements. The current
through the leftmost cell J1 is given by

J1 = V0σC ̂, (4.2)

and through the rightmost cell, J2 is given by

J2 =
V0

2
(σC + σI)̂. (4.3)

Inputting the problem into ALEGRA is straightforward. We set V0 = 102 V, σc =(
102 S/m

)
I, and σI =

(
10−4 S/m

)
I, where I is the identity tensor. In addition, we set the

simulation termination time to t = 1 s and output the results of the current density at that
time. We will run the problem with both the deprecated volume averaged calculation for
conductivity and our revised interface based model.

4.2. Parallel circuit results. Figure 4.2 shows the output from ALEGRA rendered
in ParaView with interface-based conductivity on the left and volume-averaged conductivity
on the right. These two pictures are exactly the same. This is because this problem satisfies
all of the conditions for Property 3.3.3. More importantly, both solutions are identically
close to the analytic solution that we expected to see. This test provides experimental
evidence for the correctness of Property 3.3.3. We will move on to the serial circuit, which
should exhibit more stark contrasts.

Fig. 4.2: ALEGRA output for the parallel version of the ser par test. Left: interface
based conductivity. Right: volume averaged conductivity. The analytic solution is J1,y =
104 A/m2, J2,y ≈ 5× 103 A/m2.

4.3. Serial circuit results. Figure 4.3 shows the output from ALEGRA rendered in
ParaView with interface-based conductivity on the left and volume-averaged conductivity
on the right. The current density as calculated by the volume averaged model is about
five orders of magnitude greater than that of the interface based model. In particular, the
volume averaged model is about five orders of magnitude greater than the analytic solution.
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Fig. 4.3: ALEGRA output for the serial version of the ser par test. Left: interface based
conductivity. Right: volume averaged conductivity. The analytic solution is Jx ≈ 2 ×
10−2 A/m2

5. Conclusions. Sandia’s ALEGRA finite element magnetohydrodynamics simulation
code is applied often to calculate current densities in complicated problems. Since element-
centered electric field values are typically better known than magnetic field values, we have
shown that it is prudent to take advantage of the electric field when calculating current
density in the form of Ohm’s Law. In addition, we addressed the issue of conductivity
in multi-material cells, which is of particular importance in the use of Ohm’s Law, by
introducing a new, interface based conductivity model. This formulation reconstructs and
considers material interfaces when calculating element conductivity. We then described
some properties of the model and demonstrated its flexibility on a contrived but commonly-
encountered verification problem.
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SEMI-LAGRANGIAN RKPM AND ITS IMPLEMENTATION IN THE
SIERRA/SOLIDMECHANICS ANALYSIS CODE

MARCO PASETTO∗ AND DAVID J. LITTLEWOOD†

Abstract. Numerical simulations of problems involving large deformations, material damage, fracture,
and material fragmentation are challenging for computational mechanics. Some of the issues related to
the use of the Finite Element (FE) method for this class of problems, such as mesh entanglement and
mesh distortion, can be avoided by using meshfree approaches for discretization of the problem domain
and the construction of the approximation space. The reproducing kernel particle method (RKPM) is a
meshfree approach for computational solid mechanics that can obtain an arbitrary order of completeness and
smoothness, offering a valid alternative to FE for the aforementioned problems. While a Lagrangian RKPM
approach can handle very large deformations, its formulation breaks down when the mapping between the
undeformed and the deformed configuration is no longer one-to-one. This is the case for extremely large
deformation problems, and for problems when material fragmentation and formation of new surfaces occur.
For the solution of these types of problems, the semi-Lagrangian RKPM approach was implemented in
Sierra/SolidMechanics. An overview of the RKPM semi-Lagrangian method is first presented together
with its implementation in the Sierra/SolidMechanics analysis code, with main focus on its differences with
respect to the Lagrangian RKPM approach and its implementation. The performance and potential of semi-
Lagrangian RKPM is then shown through a set of initial benchmark problems. Semi-Lagrangian RKPM is
deemed to significantly increase the class of problems solvable with RKPM in Sierra/SolidMechanics.

1. Introduction. Large deformations, material damage, fracture and material frag-
mentation are challenging computational mechanics problems. Standard Finite Element
(FE) approaches often perform poorly for the aforementioned classes of problems due to
mesh distortion and element inversion. Even though the performance of FE can be im-
proved through the use of techniques such as adaptive refinement or, in the presence of
material separation, through the use of the extended finite element method (XFEM), this
usually results in a significant computation expense [2]. For this reason, Lagrangian RKPM
was implemented in the Sierra/SolidMechanics analysis code at Sandia National Laborato-
ries for explicit transient dynamic problems [2] [16].

In the RKPM Lagrangian meshfree approach, the variational equations are formulated
in the reference undeformed configuration. Because of the meshfree nature of the method,
materials undergoing very large deformations can be modeled without encountering mesh
distortion or entanglement issues and with less loss of accuracy [7]: the Lagrangian RKPM
formulation has therefore been successfully used to model problems involving plasticity [7],
hyperelasticity [6], and structural dynamics [18]. However, Lagrangian RKPM breaks down
when the mapping between the deformed and the undeformed configuration is no longer
one-to-one and the deformation gradient loses positive definiteness. This is the case when
modeling extremely large deformation problems, such as high velocity impact and penetra-
tion processes, during which new surface formation and material fragmentation occur. To
overcome this limitation, the semi-Lagrangian RKPM formulation [15] was developed, where
the approximation functions are constructed directly in the current deformed configuration,
meaning that the mapping between the undeformed and the deformed configuration is no
longer required. Semi-Lagrangian RKPM has been used for a large variety of problems,
such as impact problems involving fragmentation [11] [1], slope stability analyses [14] and
earth moving simulations [15]. In order to allow the solution of such problems with Sier-
ra/SolidMechanics, the implementation of semi-Lagrangian RKPM in its framework was
performed.

An overview of the RKPM method, with particular attention to the peculiarities of the

∗University of California, San Diego, mpasetto@ucsd.edu
†Sandia National Laboratories, djlittl@sandia.gov
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semi-Lagrangian approach and its implementation in Sierra/SolidMechanics is presented in
Section 2. A concrete perforation problem and simulation of a wave propagating along the
length of a bar are shown in Section 3 to present the capabilities of semi-Lagrangian RKPM
and to provide an initial verification of its coding implementation.

2. Methodology. The semi-Lagrangian RKPM formulation differs from the Lagrangian
one mainly in that the equilibrium equation is formulated in the current and in the reference
configuration, respectively. This leads to several theoretical and implementation differences;
notable ones include the construction of the approximating functions and gradients being
performed at different times and the computation of the deformation gradient. Especially
the former makes it necessary to severely restructure the computation steps previously used
in the Sierra/SolidMechanics for the Lagrangian approach [2].

2.1. Solution Approximation. Differently from the Finite Element approach, where
the shape functions and the related approximation space are strictly linked to element con-
nectivity, in the RKPM approach the approximate solutions are constructed over a meshfree
discretization of the considered domain. Let Ω̄ ⊂ R3 be the considered closed domain and
let it be discretized by a set of NP nodes {xI|xI ∈ Ω̄}NPI=1. The reproducing kernel (RK)
approximation uh(x) of a generic function u(x) in Ω̄ is defined as:

uh(x) =
NP∑
I=1

ΨI(x)uI , (2.1)

where {ΨI(x)}NPI=1 is the set of RK shape functions and {uI}NPI=1 is the set of nodal coefficients
of the approximation [17][7].

I

δΩΦI

Fig. 2.1: RKPM domain discretization with RK approximation functions

RK shape functions are defined as the product of a weight kernel function Φa(x − xI)
with compact support measure a, such that ΦI = {x|Φa(x− xI) 6= 0} (Figure 2.1), and of
a correction function C (x; x− xI):

ΨI(x) = Φa(x− xI)C (x; x− xI). (2.2)
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The correction function C (x; x − xI) is defined as a linear combination of monomial basis
functions:

C (x; x− xI) =
n∑

i+j+k=0

(x1 − xI1 )i(x2 − xI2 )j (x3 − xI3 )kbijk ≡ HT (x− xI)b(x), (2.3)

where b(x) is the column vector of the monomial coefficients bijk and HT (x − xI) is the
row vector of the monomial bases:

HT (x− xI) = [{(x− xI)α}|α|≤n], (2.4)

where α = (α1, α2, α3), |α| =
3∑
i=1

αi, xα = xα1
1 xα2

2 xα3
3 and xI

α = xα1
I1x

α2
I2x

α3
I3 . The basis order

n defines the order of the shape functions and the reproducing completeness. Smoothness
of the approximation functions is determined through the choice of the kernel function
Φa(x−xI): a cubic B-spline function such as the one shown in (2.5), for example, gives C2

continuity.

Φa(
d

a
) =

{ 2
3 − 4( da )2 + 4( da )3 for 0 ≤ d

a ≤
1
2

4
3 − 4( da ) + 4( da )2 − 4

3 ( da )3 for 1
2 ≤

d
a ≤ 1

0 otherwise
(2.5)

where

d =‖ x− xI ‖ (2.6)

The coefficients b(x) are determined by substituting (2.2) in the following polynomial
reproducing conditions:

NP∑
I=1

ΨI(x)xiI1x
j
I2x

k
I3 = xi1x

j
2x
k
3 , 0 ≤ i+ j + k ≤ n. (2.7)

Once b(x) is obtained from (2.7), the RK shape functions are constructed as

ΨI(x) = HT (0)M−1(x)HT (x− xI)Φa(x− xI), (2.8)

where M(x) is called the moment matrix and is defined as follows:

M(x) =
NP∑
I=1

H(x− xI)HT (x− xI)Φa(x− xI). (2.9)

In order for the reproducing conditions in (2.7) to hold, the moment matrix defined in (2.9)
must be invertible. This means that the reproducing equations are linearly independent.
This is possible only if there are a sufficient number of kernels of non-coplanar points covering
the evaluation point x [7]. For this reason, every evaluation point will be covered by multiple
kernel supports ΦI(x) and consequently multiple shape functions ΨI(x). This leads to
the RK nodal coefficients (usually called generalized displacements) not being equivalent
to the physical displacements at the nodes (uI 6= uh(xI)), i.e the RK shape functions,
differently from the Finite Element ones, lack the Kronecker delta property. Because of
this, exact imposition of essential boundary conditions in a RKPM framework is not trivial.
In Sierra/SolidMechanics boundary singular kernel functions are employed [4] [2]; these RK
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shape functions are modified to recover the Kronecker delta property and to therefore allow
direct imposition of the boundary conditions.

Lastly, via direct differentiation of (2.7), the following property can be derived:

NP∑
I=1

∇ΨI(x)xiI1x
j
I2x

k
I3 = ∇(xi1x

j
2x
k
3), 0 ≤ i+ j + k ≤ n. (2.10)

2.2. Lagrangian and semi-Lagrangian RKPM formulations. As discussed in
Sections 1 and 2.1, in a RKPM meshfree-type discretization, approximation is achieved
through construction of the shape functions in the physical domain and the interaction
of neighboring nodes. When modeling deformation problems, a Lagrangian [7] [8] and
a semi-Lagrangian [15] [1] [5] formulation have been proposed. As previously stated, in
the RKPM Lagrangian meshfree approach, the variational equations are formulated in the
reference undeformed configuration and RK functions and their derivatives are thus evalu-
ated only once during the preprocessing stage of the analysis. However, since Lagrangian
RKPM breaks down when the mapping between the deformed and the undeformed con-
figuration is no longer one-to-one and the deformation gradient loses positive definiteness,
the semi-Lagrangian RKPM formulation was developed. Here, the approximation functions
are constructed directly in the current deformed configuration meaning that the mapping
between the undeformed and the deformed configuration is no longer required. This con-
ceptual difference between the Lagrangian and the semi-Lagrangian RKPM formulations is
illustrated in Figure 2.2. Figure 2.2A shows spherical kernel supports in the undeformed
configuration. In Lagrangian RKPM, they deform together with the material body, and
every evaluation point x is always covered by the same nodal supports (Figure 2.2B), while
in the semi-Lagrangian formulation the RK shape functions and the kernels are rebuilt every
time step (Figure 2.2C). Therefore, even though the description of motion is Lagrangian in
both approaches, the semi-Lagrangian kernels assume an Eulerian flavor and a convective
term arises in the formulation. In Sierra/SolidMechanics, in order to rebuild kernels, shape
functions, and shape function gradients at every time integration step, the nodal neighbors
are searched using an artificially increased spherical domain and then the derived neighbor
list is reduced though the use of the kernel support size, a. The idea behind this approach
is to create for each node an associated enlarged neighbor list containing all the nodes with
which the considered node is expected to interact over a time-window comprised of multiple
time-steps. At every time step, the actual neighbor list for the considered node is then
built by comparing its kernel support size a with its distance from all the other nodes in
its enlarged neighbor list. This way the comparison is performed over a set of nodes that is
smaller with respect to the one containing all the nodes in the domain, resulting in compu-
tational saving. The more computationally expensive neighbor search over all the nodes in
the domain, in fact, has to be performed only when necessary, that is at the beginning of
each considered multi-step time window.

Consider now a body initially occupying a domain ΩX with undeformed boundary ΓX
(Figure 2.3). Let us denote the initial density, body force and the surface traction in the
undeformed configuration by ρ0, b0 and h0 respectively. The material displacement is
u = x − X where X are the material reference coordinates and x are the current spatial
coordinates. The relationship between X and x is the mapping function defined x = ϕ(X, t).
After deformation occurs, the body domain is Ωx with deformed boundary Γx; ρ, b and h
represent the density, body force and the surface traction in this deformed configuration.

The equation of motion in the Lagrangian formulation is:∫
ΩX

δuiρ
0üi dΩ +

∫
ΩX

δFijPij dΩ =
∫

ΩX

δuib
0
i dΩ +

∫
ΓX

δuih
0
i dΓ, (2.11)
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A Undeformed configuration. B Deformed configuration,
Lagrangian formulation.

C Deformed configuration,
semi-Lagrangian formulation.

Fig. 2.2: Lagrangian and semi-Lagrangian discretizations.

e1

e2

e3

Reference(Initial con guration)

Deformed(Current con guration)

X x x 

(X,t) 

X 
x 

u X 

Fig. 2.3: Deformation of a material body

where F is the deformation gradient defined as Fij = ∂xi/∂Xj , and P is the first Piola-
Kirchoff stress tensor. The Cauchy stress is usually employed as the stress measure for
path-dependent material models, which means that it becomes necessary to evaluate the
spatial derivatives of the displacement. In the RKPM Lagrangian formulation this is done
via the following chain rule:

∂ΨL
I (X)
∂xi

=
∂ΨL

I (X)
∂Xj

∂Xj

∂xi
=
∂ΨL

I (X)
∂Xj

F−1
ij , (2.12)

where ΨL
I (X) = HT (0)M−1(X)HT (X−XI)Φa(X−XI) is the Lagrangian shape function

centered at node I and F−1 is the inverse of the deformation gradient F . As previously
mentioned, this approach breaks down when the mapping function x = ϕ(X, t) is no longer
one-to-one and thus no longer invertible. The semi-Lagrangian formulation solves this prob-
lem by expressing the equation of motion as follows:∫

Ωx

δuiρüi dΩ +
∫

Ωx

δu(i,j)σij dΩ =
∫

Ωx

δuibi dΩ +
∫

Γx

δuihi dΓ, (2.13)

where u(i,j) = (∂uj/∂xi + ∂ui/∂xj)/2 and σ is the Cauchy stress. The semi-Lagrangian
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shape functions as previously stated are evaluated in the current configuration as ΨSL
I (x) =

HT (0)M−1(x)HT (x− xI)Φa(x− xI).

2.3. Stress update and calculation of the internal force. As with the Lagrangian
RKPM approach described in [2], the semi-Lagrangian approximation of the displacement
field described in (2.1) enables the calculation of kinematic quantities at every time step
in the simulation. These kinematic quantities are then passed to the constitutive model
to compute stresses, which are then in turn used to compute nodal forces and related
accelerations. At this point, an explicit time integrator advances the simulation to the next
time step.

The Sierra/SolidMechanics implementation of both Lagrangian [2] and semi-Lagrangian
RKPM interfaces directly with the Library of Advanced Materials for Engineering, where a
large number of constitutive models is available [19]. The main kinematic quantities to be
passed to the material constitutive models are the symmetric part of the deformation tensor
D̄ and the deformation gradient F. D̄ can be computed directly in the current configuration
in semi-Lagrangian RKPM as:

D̄ij =
1

2∆t
(Gij +Gji), (2.14)

where G is computed incrementally by using the gradient of the increment of displacement
∆u = un+1−un with respect to the half time step configuration xn+1/2 = (1/2)(xn+xn+1)
[2]:

Gij =
∂∆ui
∂x

n+1/2
j

, (2.15)

which leads to [2]:

G = DF(I +
1
2
DF)−1, (2.16)

where I is the identity tensor and where the ij-th component of the incremental deformation
gradient DF is defined as:

(DF)ij =
NP∑
J=1

Ψ∇,SLJj (x)∆uJi, (2.17)

where ∆uJ is the incremental generalized displacement at node J and Ψ∇,SLJj (x) is the
smoothed spatial gradient of the semi-Lagrangian shape function, thus computed in the
current deformed configuration. The deformation gradient F is not computed directly. To
obtain its value when necessary, its inverse F−1 is computed first as:

F−1
ij = δij −

NP∑
J=1

Ψ∇,SLJj (x)uJi, (2.18)

and F is then computed as F = (F−1)−1.
Differently from standard Finite Element schemes, and as in the Lagrangian RKPM

approach implemented in Sierra/SolidMechanics [2], the above quantities are computed at
the nodes rather than Gauss points due to the use of a nodal integration scheme. For use with
Lagrangian RKPM, two nodal spatial integration schemes had previously been implemented
in Sierra/SolidMechanics [2]: SCNI (Stabilized Conforming Nodal Integration) [9] and SNNI
(Stabilized Nonconforming Nodal Integration) [1].
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RKPM Node

Smoothing Zone

A Conforming smoothing cells for SCNI.

RKPM Node

Smoothing Zone

B Nonconforming smoothing cells for SNNI.

Fig. 2.4: RKPM smoothing cells for SCNI and SNNI.

SCNI was developed to remedy rank instability present in the direct nodal integration
scheme and to obtain optimal convergence for linearly complete functions. In order to
do so, the domain is partitioned in conforming cells (Figure 2.4A) each associated with a
RKPM node; to avoid the rank instability arising from the evaluation of the shape functions
gradients at the nodes, gradients are smoothed over the conforming nodal domains. Because
of the conforming nature of the nodal cells and of the way the smoothing is performed,
the first order variational consistency for Galerkin linear exactness is satisfied, leading to
optimal convergence. Unfortunately, SCNI is not a feasible integration scheme for semi-
Lagrangian RKPM. For SCNI to be used in the semi-Lagrangian formulation, the conforming
nodal domains would have to be reconstructed at every integration time step, making this
approach too computationally expensive for practical purposes. For this reason SNNI is
used as an alternative to SCNI. In SNNI the smoothing of the shape function gradients
is performed over nonconforming cells, represented by box domains constructed around
each RKPM node (Figure 2.4B); these smoothing domains maintain their shape for the
whole duration of the simulation, making them very suitable for semi-Lagrangian RKPM.
The relaxation of the conforming requirement however leads to convergence rates being
no longer optimal. To improve the performance of the SNNI scheme an assumed strain
method was developed to achieve satisfaction of the first order variational consistent (VC)
condition [10]. Together with the semi-Lagrangian formulation, an additional integration
scheme has been implemented in Sierra/SolidMechanics: NSNI (Naturally Stabilized Nodal
Integration). NSNI adds stabilization to the DNI (Direct Nodal Integration) scheme by
performing a Taylor-like expansion of the approximate displacement field in each nodal
integration cell about the related RKPM node; this leads to the elimination of the zero
energy modes associated with DNI through addition of coercivity arising naturally from the
formulation and the RKPM domain discretization. The interested reader is referred to [13].

After D̄ and F have been computed according to eqs. (2.14)-(2.18), the values of the
Cauchy stress σn+1 are evaluated through a call to the material constitutive model. Lastly
the internal force fn+1

int is determined as:

fn+1
int =

NP∑
J=1

BT (xJ)Θn+1(xJ)VJ , (2.19)

where BT (xJ) and Θn+1(xJ) are the Voigt notation vector representation of respectively
the smoothed spatial gradients and the Cauchy stress, while VJ is the current nodal volume.
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Once the internal forces are available, nodal accelerations are computed and the time inte-
gration scheme advances to the next time step. In Sierra/SolidMechanics the procedure to
estimate the time step to be used in semi-Lagrangian RKPM is currently the same as the
one used for Lagrangian RKPM, described in [2].

3. Verification & Validation. The semi-Lagrangian RKPM framework in
Sierra/SolidMechanics is currently undergoing verification and validation and being cor-
rected and refined accordingly to the results obtained from the V&V process. For this
reason, only an initial test case of a wave propagation in a bar solved with Sierra/Solid-
Mechanics will be presented here. In order to further demonstrate the capabilities of the
semi-Lagrangian formulation, a concrete perforation problem solved with NMAP (Nonlin-
ear Meshfree Analysis Program) [12] is presented first. Lastly, the ongoing work being
performed to further verify and validate the semi-Lagrangian implementation and perfor-
mance is described.

3.1. Impact-Perforation Simulation. Simulation of the penetration of a
spherical steel projectile impacting a CorTuf [3] ultra high-strength concrete panel with
a zero degree angle is presented in Figure 3.1. This example problem is taken from the
experiments presented in [11], and the corresponding experimental results are used as a
reference for comparison with the the numerical results from the RKPM simulation. Specif-
ically, impact of a spherical projectile with an initial velocity of 1114.65 m/s on a 2.54 cm
thick CorTuf concrete panel is considered. In the NMAP simulation, the projectile was
modeled as a rigid body with a discretization of 2,273 nodes while the concrete panel was
discretized using 224,422 nodes and modeled using the MIDM (microcrack informed dam-
age model)-enhanced AFC model; the AFC material model parameters can be found in [11].
Contact between the panel and the projectile was modeled using the smooth penalty contact
algorithm [12] with a penalty factor of 0.2e8.

damage (shear)
1.00

0.75

0.50

0.00

0.25

Fig. 3.1: Debris cloud due to concrete perforation

Figure 3.1 shows the debris cloud generated by the fragmentation of the concrete due
to impact, while in Figures 3.2A and 3.2B the panel shear and tension damage patterns can
be observed.
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B Tension Damage.

Fig. 3.2: Shear and tension damage.

The numerical result for the projectile velocity over time is compared to the experimental
final velocity, represented as a constant line, in Figure 3.3. The semi-Lagrangian simulation
projectile final velocity is 578.28 m/s, against an observed experimental one of 544.68 m/s.
The numerically predicted reduction in velocity of the projectile is therefore 52% while the
experimental velocity reduction is 49%.
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Fig. 3.3: Projectile exit velocity
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3.2. Wave Propagation in a Bar. In order to verify the implementation of semi-
Lagrangian RKPM in Sierra/SolidMechanics, propagation of a wave along a long, thin bar
is used as a test. A model of a bar with dimensions of 2 cm by 0.02 cm by 0.02 cm
was built. The bar was modeled as elastic with a density of 7.8 g/cm3 and a Young’s
modulus of 3.0e5 MPa. A Poisson’s ratio of zero was used to simulate a one-dimensional
solution. For the RKPM formulation the bar was discretized with 404 nodes and a first
order basis, a quartic B-spline kernel, SNNI domain integration and a normalized support
size of 2.1 were used. The bar was given an initial velocity of 100 cm/s and a fixed boundary
displacement condition was applied to the leading edge of the bar. The same type of test was
performed with SCNI domain integration to verify the Lagrangian RKPM implementation
in Sierra/SolidMechanics in [2]. The following analytical expression was used as a reference
solution to verify the wave propagation results:

u(x, t) =
∞∑
n=1

(An sin(ωnt) sin(
(2n− 1)π

2L
x)), (3.1)

where

An =
8v0L

(2n− 1)2π2

√
ρ

E
, (3.2)

and

ωn =
(2n− 1)π

2L

√
E

ρ
, (3.3)

In the above expressions, u(x, t) represents the displacement at time t at position x,
L and v0 are respectively the initial length and initial velocity of the bar, ρ is the bar
density and E its Young’s modulus. Figures 3.4 and 3.5 show comparison between the
computational and the analytical solution for the considered problem. Further verification
and validation is however necessary and is the subject of ongoing work described in the next
subsection.
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Fig. 3.4: Bar midpoint displacement over time.
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Fig. 3.5: Bar endpoint displacement over time.

3.3. Current and ongoing work. As mentioned, the implementation of semi-Lagrangian
RKPM in Sierra/SolidMechanics is currently undergoing verification and validation and,
when necessary, being accordingly corrected. The following points describe the current and
ongoing work being performed in order to ensure a correct and effective implementation,
and to showcase the capabilities of the semi-Lagrangian RKPM approach:

• Simple test cases with known expected solutions are being solved as a tool for
debugging. To this end, the problem of a freely rotating cube with different given
initial velocities is being considered. Solutions obtained with the NMAP code are
also being used as a sanity check.
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• The code implementation of semi-Lagrangian RKPM is being systematically checked
through individual inspection of all the related subroutines and their interaction
with the Sierra/SolidMechanics framework.

• The capabilities of semi-Lagrangian RKPM have started being assessed in order
to further define its application space and its performance for significant problems
encountered in practice. In this regard, simulations of a cylindrical steel rod im-
pacting a steel plate are currently being performed, providing a starting point for
further ongoing effort in this direction.

4. Conclusions. The semi-Lagrangian RKPM formulation is being implemented in
Sierra/SolidMechanics with the goal of providing an effective simulation capability for prob-
lems involving extremely large deformations, material fragmentation, and formation of new
surfaces. The implementation is currently restricted to explicit transient dynamics and is
at the time of writing undergoing improvement and verification and validation. The semi-
Lagrangian formulation together with the solution of some initial benchmark problems were
presented to show some of the method capabilities and the status of semi-Lagrangian RKPM
in Sierra/SolidMechanics.
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EXPLORING THE USE OF THE FOVIO EYETRACKER TO MEASURE
COGNITIVE LOAD

GRACE A. THOMPSON∗, LAURA E. MATZEN† , AND MIKA L. ARMENTA‡

Abstract. Pupillometry metrics collected by the FOVIO eyetracker have recently been used in con-
junction with the Index of Cognitive Activity (ICA) to measure cognitive activity in humans. This measure
could be indicative of the cognitive load a person is experiencing. If accurate, the ICA used in conjunction
with FOVIO technology could be used in a wide range of field studies. We seek to confirm whether these
reports are accurate and consistent across individuals and types of cognitive load. We do so by developing a
number of tasks that test the many variables that could affect the eyetracker’s ability to measure cognitive
load. Electroencephalography (EEG) is already an established measure of cognitive load, so to determine
the accuracy of the eyetracker’s findings, we also collected EEG data during the tasks and will compare
results across measurement systems.

1. Introduction. In order to evaluate the abilities and efficiency of specialists in na-
tional security work domains, an accurate and non-invasive technology is needed to collect
data in ecologically realistic situations. The FOVIO eyetracker presents a possible candi-
date for this task [4]. The FOVIO is an eyetracker that uses an infrared illumination and
camera system to capture the eyes’ motion, gaze point, and pupil dilation. When used in
conjunction with the Index of Cognitive Activity (ICA) the FOVIO has the potential to
unobtrusively measure cognitive load in naturalistic work environments [23]. In testing this
function, there are three potential problems that we must consider. First of all, the term
“cognitive load” is ambiguous. It is interpreted in many different ways by different scientists
and the specific mechanics that cause cognitive load are still largely unknown. Secondly, an
established way to measure cognitive load is by using electroencephalography while an indi-
vidual performs the N-Back task, a working memory task [3]. The main task used to induce
cognitive load when recording with the FOVIO has been the Follow-Solve-Listen task which
loads multiple cognitive processing functions, including auditory, visual, and executive, in
addition to working memory [24]. Finally, there are many potential variables that could
affect the FOVIO’s ability to accurately measure pupil diameter, which is a key parameter
influencing ICA measurement. Although initial studies using the ICA have been promising,
they have usually used small sample sizes with complex analysis of the data. This study
aims to gather a broader set of data and gain some additional evidence either for or against
the use of the FOVIO to measure cognitive ability in the field.

1.1. Cognitive Load. The term cognitive load is fairly ambiguous and its definition is
not widely agreed upon. The idea of cognitive load was first introduced by Dr. John Sweller
in his 1988 paper Cognitive Load During Problem Solving: Effects on Learning [29]. Sweller
defined cognitive load as mental effort. Performing harder tasks or doing multiple tasks at
once requires more mental effort and increases cognitive load while performing easier tasks
requires less mental effort and decreases cognitive load. Many studies have been conducted
on how different difficulty levels of tasks affect cognitive load and how the level of cognitive
load affects levels of awareness, attention, and multitasking [18][19][31].

Cognitive load has no universal metric assigned to it so researchers have developed a
variety of ways to characterize it. The first way is through feedback from participants.
Self-reporting is helpful in understanding overall load, but is severely lacking when more
minuscule changes need to be observed [6]. The second way is by changing the difficulty
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in a certain task and collecting data on response times, accuracy, and error rates. Instead
of changing the difficulty of one task, researchers can also add secondary tasks to increase
cognitive load. Finally, researchers can also collect physiological data to assess cognitive
load.

There are three main factors that affect cognitive load: perceptual load, working mem-
ory, and cognitive fatigue. Perceptual load increases or decreases depending on the visual
complexity of the stimulus. Higher levels of perceptual load correlate with lower levels of
awareness of distractors [18]. During tasks with more visual complexity, participants were
less likely to notice non-task-related distractors. Working memory is the ability to hold
information in the mind for short periods of time. Many studies on working memory require
participants to remember a “memory set”,typically consisteing of images, information, or
words, while doing different tasks. Unlike perceptual load, higher levels of induced working
memory loads lead to more awareness of distractors [19] [31]. Finally, cognitive load is af-
fected by cognitive fatigue. Cognitive fatigue refers to the exhausted feeling one gets after
doing a long and/or difficult task. Cognitive fatigue is less objectively measurable and it
is not entirely clear what causes it. Different combinations of these three main variables
create different levels in cognitive load. These changes can be measured through a variety
of different technologies.

1.2. EEG. The main physiological measure used to quantify cognitive load is elec-
troencephalography (EEG). Other measures like Functional Magnetic Resonance Imaging
(fMRI), Positron Emission Tomography (PET) scans, eye metrics, and hormone monitoring
are inconvenient for a variety of reasons, such as being too costly, invasive, unreliable, and/or
slow [6]. EEG, however, is non-invasive, relatively inexpensive, and has high temporal res-
olution. There are also several studies showing its effectiveness in accurately measuring
cognitive load [8].

EEG is able to pick up four different brain rhythms: delta, theta, alpha, and beta waves,
each with a different frequency. Both theta and alpha waves can be affected by changes in
cognitive load [14][15][17]. One study showed that as tasks become more difficult, theta
activity increases while alpha activity decreases [13]. Individual Alpha Frequency (IAF)
was also shown to drop with performance during memory tasks [16]. When measuring
cognitive load with EEG, it is better to measure the changes in the EEG signal rather than
the absolute value of a frequency band because of the variations in brain waves from one
person to another [15].

Despite being one of the best tools to measure cognitive load, the EEG has some short-
comings. One such shortcoming is that almost all EEG studies take place in highly controlled
environments. Also, while the EEG possesses great temporal resolution, it is severely lack-
ing in spatial resolution. Another problems is that when measuring cognitive load, EEG is
almost used exclusively with the N-Back task. Because of this, cognitive load is measured
mostly when working memory is used. A technique is needed that can measure all variables
of cognitive load. Finally, the EEG is easily affected by muscle movement or other sources
of electricity (e.g. lights, computers, phones), which can mask the actual brain waves [8].
The EEG is not very effective because of these shortcomings and does not suit our needs
outside of controlled environments. However, because it is so effective in measuring cog-
nitive load, we can use it to test other technologies that could potentially be used outside
such a controlled experiment.

1.3. Pupillometry. Pupillometry is the measurement of pupil diameter. The FOVIO
eyetracker, when used in conjunction with the Index of Cognitive Activity (ICA), has been
reported to measure cognitive load using pupillometry metrics. The FOVIO can measure
pupil size and track eye gaze by using an infrared illumination and a camera system directed
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at the eyes. Pupil dilation is mostly affected by changes in light. These changes are usually
very large and can be seen by the naked eye. However, when all other factors are held
constant, minor pupil dilation caused by mental activity can be observed [7]. The ICA
takes the data recorded by the FOVIO and measures the frequency of theses small pupil
dilations [21]. There have been multiple studies using eyetrackers to measure cognitive load
while testing, performing surgery, and making complex decisions [5][28][22].

Because the changes in pupil size due to cognitive load are so small, they can be easily
masked by a variety of other factors that affect pupil size. For example, changes in luminosity
of a screen or brightness of the environment can cause large changes in pupil size. Also, the
position of the eye can change the eyetracker’s perceived size of the pupil [9][12]. Also, the
techniques that ICA uses for measuring the frequency of these dilations are not as widely
studied as other pupillometry metrics. In fact, before the ICA, most eye-based measures of
cognitive load measured the change in pupil size rather than the frequency of those changes.
If the FOVIO eyetracker and ICA can successfully perceive and analyze the small changes
in pupil size due to cognitive load without being affected by all the other larger changes in
pupil diameter, then it has the potential for being a very powerful tool.

2. Materials and Methods.

2.1. Participants. All participants were volunteers over the age of 18 recruited from
Sandia National Laboratories. All participants had normal or corrected-to-normal vision.
Volunteers were excluded if they were not right-handed, had a history of neurological disease
(seizures, stroke, tumor etc.), or had a history of skull fractures, brain injury, or brain
surgery. All the participants signed a consent form and filled out a demographic form upon
arriving at their appointment.

2.2. EEG Setup. EEG caps in different sizes from the company ANT Neuro were
used. The electrode layout on the caps was the equidistant hexagonal layout [1] with 128
electrodes. However, a montage was created so that only 32 of those electrodes were be-
ing used. The decision to only use 32 electrodes was made because this study does not
require spatial accuracy and using fewer electrodes saves time during the preparation of the
participant.

2.3. Eyetracking Setup. The eyetracker used was the FOVIO distributed by Eye-
tracking, Inc. It was positioned 22.0 cm in front of the base of the monitor, with a vertical
offset of 2.5 cm. The eyetracker maintained an angle of about 28°, while the monitor main-
tained an angle of about 5°. Both angles were remeasured daily and fluctuated ±0.2°. The
eyetracker was calibrated before each task.

2.4. Stimuli. Five different tasks were created to test different variables that could af-
fect the eyetracker’s measure of cognitive load. All tasks were either made on or converted to
E-Prime, an application suite created by Psychology Software Tools, Inc. designed to make
computer tasks [30]. The five tasks were counterbalanced so equal numbers of participants
went through the tasks in different orders. The participants were seated approximately
90 cm away from the 24 inch monitor inside an electrically shielded booth. The door was
left open, however as it got very hot inside the booth and perspiration interrupts the EEG
recordings. Timing triggers that recorded the beginning and end of each block of every task
were inserted so the EEG data could be accurately correlated with the eyetracking data.
Fixation points (5000 ms duration) with colors corresponding to each task were also added
before each block to verify the calibration of the eyetracker during the task and to serve
as an additional landmark for the beginning of the block in the EEG data. A complete
calibration of the eyetracker was also conducted before each task.
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A Follow B Follow and solve

C Follow, solve, and listen

Fig. 2.1: The three difficulty levels of the Follow, Solve, Listen task.

2.4.1. Task 1 – Follow, Solve, Listen (FSL). The first task was provided by Eye-
Tracking, Inc and is the task they used to verify their reports that the ICA is indicative
of cognitive load. The task was originally created by EyeTracking, Inc on EyeWorks, an
eyetracking software suite [2]. The task is divided into three parts increasing in difficulty
level. The first part requires participants to follow a yellow dot among other yellow dots on
a blue background on the left half of the screen (Figure 2.1A). The second block repeats the
same task but also asks the participants to do a progressive math problem on the right half
of the screen (Figure 2.1B). Finally, in addition to the first two tasks, the last block has the
participant watch a spinning green circle and say what direction it is spinning when they
hear a beep (Figure 2.1C). Each block takes approximately 45 seconds.

2.4.2. Task 2 – FSL No-task. The FSLT NoTask mimics a gaze trajectory per-
formed during the Follow-Solve-Listen Test [25] without the task demands. In other words,
participants are presented with visual stimuli comparable to the FSLT and for the same time
amount of time (roughly 45s per block), however they are not asked to track the moving
target among distractors, compute the arithmetic problem, or report the direction of the
rotating wheel when the tone sounds. Instead, participants follow a white dot that moves
along the same trajectory of a real participant performing the FSLT. Stimuli in the FSLT
NoTask were matched for color, luminosity and size to their comparable task-on FSLT stim-
uli. For example, the backgrounds of both tasks are black, and the green disk in the third
block of both tasks is centered (see Figure 2.2).

This task was created using one participant’s gaze coordinate data from the FSLT.
Three different individuals were recorded doing the FSL Task at sampling rate of 60Hz by
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Fig. 2.2: Follow-Solve-Listen NoTask stimuli.

a FOVIO eye-tracker. The data was then run through Marshall’s Index of Cognitive Load
(ICA) algorithm in EyeWorks Analyze. The individual’s gaze data set that was chosen
showed an increase in ICA so the task could mimic the eye movements that correlated with
an increase in cognitive load. Missing data points were linearly interpolated. Following
this, point-to-point distances (p-to-p) between consecutive gaze points were used to dis-
tinguish significant saccades (quantified as a distance greater-than-or-equal-to 100 pixels)
from minute microsaccades, jitter and other noise. Groups were created based on these
significant saccades. All samples up to a p-to-p distance of 100 pixels or greater constituted
a group. The coordinates associated with a distance of 100 pixels or greater began a sub-
sequent group, which concluded with the coordinates associated with a distance just prior
to a p-to-p greater-than-or-equal-to 100 pixels. To make the FSLT No-Task comfortable
for participants to view, further smoothing was necessary and we applied a moving window
average (8 samples per window) within each of the groups. All analyses were performed
using MATLAB R2015A [26].

2.4.3. Task 3 – N-back Combined Task. The N-back task is a common EEG task
used to creative different levels of cognitive load. The N-back task requires participants to
utilize their working memory by remembering a letter or orientation “n” number of steps
back in the sequence. For our task, participants were required to determine if the stimulus
shown was the same as the stimulus shown 3(n=3) slides back.

To create different levels of cognitive load, we created three different versions of the
task. The first two were meant to induce lower levels of cognitive load while the last one
was meant to induce a higher level of cognitive load. The first block required the partici-
pant to remember the position of a white box. The second block required the participant
to remember the letter inside the white box. The last block required the participant to
remember both the position and the letter inside of the white box. To familiarize them with
the task, we had participants do a short practice round of each block before beginning the
task.

All of the stimuli were presented on a black background in white. Before each stimulus,
a 0.5 second fixation cross at the center of the screen surrounded by eight empty boxes
was presented. The stimulus containing the eight boxes, one completely white with a black
letter in its center, was then presented for 0.5 seconds (see Figure 2.3). Finally, the eight
empty boxes were shown again for 1.5 seconds. Participants were told to press the “1” key
if the current slide matched the slide three trials back and the “2” key if it did not.

2.4.4. Task 4 – Hebrew Letter Task. This task was originally described by Sophie
Forster and Nilli Lavie in their 2009 paper [11]. They modeled it after a similar Perceptual
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A “x” B “K” C “m”

D “x” E “k” F “B”

Fig. 2.3: An example sequence of stimuli from the N-Back Task. A, B, and C are all
incorrect for all three versions of the task; D is correct for all three versions(verbal, spatial,
and combined) of the task; E is correct for the verbal version of the task; F is correct for
the spatial version of the task

Load task that they created in the same experiment that displayed circles of letters and dots
in quick succession. However, instead of using the English alphabet, this task uses Hebrew
letters. The participants were asked to look for the two Hebrew Letters Gimel (Figure 2.4A)
and Final Pe (Figure 2.4B) and to press the “0” and “2” keys respectively if they saw them.
We used this task to induce perceptual load through visual search. The participants were
asked before this task if they knew how to read Hebrew or if they knew any Hebrew letters.
The purpose of this was to make sure no verbal/lingual input affected how the participants
went through the task.

This task had both a low load and high load version. For both versions, the stimuli were
preceded by a 500 ms blank interval and 500 ms fixation. The stimulus was then presented
for 100 ms. In the low load version, each stimulus consisted of five dots and one target letter
arranged randomly in a circle (with the radius subtending 2°degrees of visual angle) (Figure
2.5A). In the high load version, each stimulus replaced three of the dots with three different
non-target letters (Figure 2.5B). All stimuli, fixations, and instructions were presented on
a black background. The stimuli and the 500 ms fixation points were gray text while the
instructions were presented in white text.

2.4.5. Task 5 – Raven’s Task. Our fifth task was a variation of the Raven’s Pro-
gressive Matrices, which is a widely used task to measure analytical intelligence [10]. It was
originally developed as a booklet of tests called Standard Progressive Matrices in 1938 by
John Carlyle Raven [20]. The task we used was developed by Laura E. Matzen et al. in
2010 [27]. The task was divided into two blocks. The first block contained only the matrix
problems while the second block had an additional auditory task for the participants to
complete at the same time as the matrix problems.
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A Gimel B Final Pe

Fig. 2.4: The two target letters for the Perceptual Load task.

A Low load B High Load

Fig. 2.5: Hebrew Letter Task stimuli. The images shown are zoomed in for viewing purposes;
the actual stimuli appear smaller in relation to the screen.

Each block contained five different matrix problems. Each slide contained a 3x3 matrix
above eight numbered answer choices (Figure 2.6). The matrices and answer choices were
all black and gray over a white background and the answer choices were numbered with red
characters. Each matrix was presented for a maximum of 90 seconds or until the participant
answered. During the second block, participants listened to spoken sentences while solving
the matrices. The participants were asked to determine whether or not each sentence played
made sense or not. If the sentence made sense, the participant pressed the“Y” key and if it
did not, the participant pressed the “U” key.
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A Correct answer: 1 B Correct answer: 2

C Correct answer: 2 D Correct answer: 5

Fig. 2.6: Example stimuli from the Raven’s Task.

3. Results and Discussion. At the time of the writing, data collection had just been
completed, but data analysis had just begun. Preliminary behavioral results show a decrease
in accuracy as difficulty increases across tasks as expected. The EEG and ICA analyses are
not yet complete.

4. Conclusions. Depending on the results of this experiment, the FOVIO eyetracker
and the ICA could be a great help in understanding how analysts work and how to improve
their efficiency. If these technologies were able to accurately measure cognitive load, re-
searchers could perform experiments on cognitive load in more complex environments. The
EEG will probably still remain the primary measure of cognitive load, but in non-memory-
related tasks, the eyetracker could really broaden the field. Even if the data does not show
the the FOVIO eyetracker and ICA can measure cognitive load, there is still a lot of research
to be done, and eyetracking could still become a useful method for assessing cognitive load.
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FILE FRAGMENT CLASSIFICATION THROUGH SPARSE CODING

FELIX WANG∗, TU-THACH QUACH† , AND FRED ROTHGANGER ‡

Abstract. File fragment classification is an important step in the task of file carving in digital forensics.
In file carving, a file must be reconstructed based on its content as a result of its fragmented storage on
disk or in memory. Existing methods for automatic file type classification from file fragments typically
use hand-engineered features such as byte histograms. In this paper, we propose an approach for feature
extraction from file fragments based on sparse coding. The advantage of using this approach is two-fold.
First, sparse coding is capable of learning features automatically based on how well those features may then
be used to reconstruct the original data. In comparison to hand engineering, crafting features to be used
in a classifier can be difficult, even with domain expertise, and may still miss differentiating characteristics.
Second, by using a sparse basis for our feature space, we are more efficiently able to train state-of-the-art
classification algorithms such as recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM)
architecture. We demonstrate the capability of this approach by presenting competitive classification results
to existing methods without the use of hand-engineered features.

1. Introduction. File fragment classification is an important step in the task of file
carving in digital forensics. During data recovery, the fragmentation of files on damaged
media or memory dumps results in files that appear corrupted or missing even though the
data is present [6]. For file carving, in order to reconstruct the complete file from these
fragments, analysts must determine which fragment might go with which file. Because the
search space of where each fragment may potentially belong to is so large, automated tools
are essential to narrowing down what an analyst might process by hand.

The main goal of automatic file fragment classification is to determine which type of
file (e.g. doc, jpg, pdf) a fragment belongs to depending on its content. In the literature,
support vector machines (SVMs) are a powerful machine learning method to classify file
fragments [5]. One major downside to SVMs is that the approach typically requires devel-
opment of a large number of hand-engineered features. Example features are histograms of
the bytes (unigrams) within a file fragment, as well as histograms of pairs of bytes (bigrams).
More global features include the Shannon entropy over these unigrams and bigrams, or the
compressed length of the file fragment [3, 20].

We propose an approach for feature extraction from file fragments based on sparse cod-
ing (details in Section 2.1). This approach has a number of advantages over traditionally
hand-engineered features. Primarily, the features that are extracted through sparse coding
are found automatically, in contrast to features that might need to be laboriously hand-
crafted to be suitable for a particular domain [15]. Due to its minimization with respect
to reconstruction error, the features found though sparse coding methods furthermore cap-
ture a significant amount of information about the domain without needing prior domain
knowledge.

Using this approach, we are also able to transform the digital information from its
“natural” representation of densely packed bytes into a feature space that is more easily
processed by machine learning algorithms. In particular, by decomposing a file fragment
into a series of sparse vectors we may more effectively train state-of-the-art classification
architectures such as recurrent neural networks (RNNs) with Long Short-Term Memory
(LSTM) [7, 8]. By using sparse coding in conjunction with RNNs, we are able to both
capture more local features of a file fragment, through the sparse decomposition, as well
as more global relationships among these features, through sequence learning by the neural
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network.
The remaining sections of the paper are organized as follows: in Section 2 we describe

sparse coding methods as well as the Long Short-Term Memory network architecture; in
Section 3 we describe the experimental data and how we used it to train our classifier; in
Section 4 we provide and discuss the results from our experiments; and in Section 5 we make
concluding remarks.

2. Background.

2.1. Sparse Coding. Sparse coding is a way of modeling data by decomposing it into
sparse linear combinations of elements of a given basis set [12]. That is, a data vector
y ∈ Rm may be approximated as multiplying a dictionary matrix D ∈ Rm×k with a sparse
vector x ∈ Rk: y ≈ Dx. A vector is said to be s-sparse when there are at most s nonzero
entries in the vector. Sparse coding, when a dictionary is known (e.g. a wavelet basis), may
be formulated as the L1-regularized optimization problem,

l(y,D) = min
x∈Rk

1
2
‖y −Dx‖22 + λ ‖x‖1 (2.1)

where the cost may be understood as the contributions of the reconstruction error 1
2 ||y −

Dx||22 and a sparsity penalty λ||x||1, and λ is a regularization parameter. This particular
formulation is also known as the lasso [19].

When a dictionary is not known, or it is more desirable to learn a dictionary more
representative of the data, an extended formulation to the above optimization problem is
presented as

fn(Y ) = min
D∈Rm×k,X∈Rk×n

1
n

n∑
i=1

(
1
2
‖yi −Dxi‖22 + λ ‖xi‖1

)
(2.2)

where Y = {y1, . . . , yn} are the data vectors from which we want to learn a dictionary.
Because the optimization occurs over both the dictionary D and the set of sparse vectors
X = {x1, . . . , xn}, most approaches to dictionary learning iteratively fix one variable while
minimizing the other. For learning dictionaries from large input data sets, online or stream-
ing methods have been developed [14].

Sparse coding is typically used in domains where the information being coded contains a
great deal of redundancy, such as representing images and other natural signals [14]. In the
domain of digital information, one caveat is that the data we wish to analyze and represent
is often already in a compressed format. We find that in spite of this, sparse coding is
still capable of providing a good decomposition measured with respect to reconstruction
error. That is, even in the digital domain, the sparse coding approach is able to extract
representative byte patterns to provide a rich basis set with respect to the original data.

A comparison of the application of sparse coding, specifically dictionary learning, of
natural images to sparse coding of digital information is shown in Fig. 2.1. In contrast to
image patches, where pixels are taken as 2-dimensional space, byte patches may be provided
as a 1-dimensional sequence (resized in Fig. 2.1 to 2D for ease of visualization). Once the
patches are extracted from the original data, the algorithm for dictionary learning is the
same in either domain. Differences are made apparent in the entries of the dictionaries that
are learned, corresponding to the differences in how data is structured between the different
domains.

While the byte patterns that are extracted using a sparse coding approach potentially
span across a relatively large space, the total number of patterns extracted from this space
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Fig. 2.1: Comparison of representative dictionaries learned from patches of natural images
to representative dictionaries learned from digital information

is relatively small. Even for overcomplete dictionaries in image reconstruction applications,
the number of entries in the dictionary is only greater by a moderate ratio to the number
of pixels in the image patch [12]. In contrast, a common hand-engineered feature of digital
information is the byte histogram, consisting of 256 elements. In order to capture pairs of
bytes, an engineered feature space is typically expanded by 2562 = 65, 536 features, and for
triplets of bytes, it is even more. For a modest patch size of 8× 8 = 64 pixels that may be
used in the sparse coding of images, the hand engineering of digital features spanning the
same spatial scale is intractable.

Using sparse coding to extract features has some advantages over hand-engineered fea-
tures in the training of state-of-the-art neural network architectures as well. For the back-
propagation algorithm to adjust the weights in a neural network, it is desirable to have
the inputs transformed into a space such that the average of each input variable over the
training set is close to zero, the covariance of the input variables is scaled to about the
same, and that the input variables are uncorrelated if possible [11]. Although sparse coding
does not make guarantees as to the covariance of the inputs, due to the sparsity constraint,
sparse coding favors features that are uncorrelated. This allows for only a small subset of
the features to be active when reconstructing the original data vectors.

2.2. Long Short-Term Memory. Neural networks are a powerful method for com-
puting the nonlinear function approximation that is characteristic of classification tasks.
Compared to other machine learning algorithms, such as support vector machines (SVMs),
neural network architectures tend to scale better when it comes to learning complex high-
dimensional functions [1]. This is largely due to the hierarchical nature of “deep” architec-
tures that enable the generalization of data over larger spatial scales while maintaining their
ability to perform credit assignment across different levels of representation.
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In order to learn sequence data, generalization over temporal scales is needed, and a
commonly used architecture in this domain is Long Short-Term Memory (LSTM) [13, 8].
In order for a network to process the history of inputs rather than a snapshot in time, the
outputs of neurons are fed back into the network for the next time step. This is the basic
idea of a recurrent neural network (RNN). On top of this basic idea, LSTM introduces the
concept of a memory cell augmenting the neuron. This allows for the network to retain
contextual information over longer temporal scales during training than traditional RNNs
without the exponential attenuation of error [10]. In addition to the memory cell, RNNs
with LSTM also contain a number of gates that control the state of the memory cell as
a function of the input. Together, the basic unit of the LSTM architecture is known as a
memory block. For an in depth analysis of the different components and variants of the
LSTM architecture, we encourage the reader to review [8].

3. Experimental Setup.

3.1. Dataset. We use a dataset of 9 common file types that was originally obtained
from crawling various internet sites for the purpose of classifying files for identifying data
exfiltration [4]. The file types are html, png, jpg, gif, pdf, doc, elf (x86-64 Linux
executables), gz (gzip compressed files), and aes (AES-256 encrypted files). There are a
total of 4,500 files, with 500 files per file type or class.

From these files, file fragments with length of 512 bytes were extracted by uniformly
randomly sampling locations. A fragment size of 512 bytes was selected in order to compare
our approach with similar studies in the literature [5]. Specifically, 512 bytes were read
starting from a sampled location relative to the start of the file, and the locations were
byte-aligned to 64 bytes, which was the size of the byte patches used in the dictionary
learning stage (further details in Section 3.1.1). Furthermore, the first 512 bytes of the file
were omitted as they frequently contain header information that identifies the file type. We
obtain an equal number of file fragments for each file type by extracting 20 file fragments
per file for a total of 90,000 file fragments across all of the file types.

3.1.1. Dictionary Learning. In sparse coding, the general goal of dictionary learning
is to obtain an overcomplete basis set from the data vectors [12]. Similar to image patches
or slices of other natural signals, we learn a dictionary over byte patches. Unlike natural
signals however, digital information is often already in a compressed format, so the ratio
of the elements in the dictionary to the size of the data vector is significantly higher than
what is more commonly found in the literature. We chose to use a dictionary of size 1,024
for byte patches of size 64 for a ratio of 16 : 1.

The dictionary was trained using the spams sparse coding library which provides a
scalable online algorithm for dictionary learning based on stochastic gradient descent [14].
A sample trained dictionary is shown in figure Fig. 3.1. Although there are a few elements
with identifiable patterns, the vast majority of the elements appear to be random. This
result is not surprising as the dictionary is learned from byte patches from files that have
both low entropy (e.g. html) and high entropy (e.g. aes) with respect to their byte
histograms.

3.1.2. LSTM Classifier. Using a patch size of 64 bytes, each file fragment may be
decomposed into 15 overlapping patches (50% overlap between patches). From these patches,
we use the standard lasso method (see Section 2.1) to obtain a sequence of sparse vectors for
each file fragment. This sequence of sparse vectors is then used as the input to our classifier.

We use a multi-layer LSTM neural network with dropout regularization for classification.
Implementation of the network was done using the Keras library for Python on top of the
Theano backend [2, 18]. The input layer is simply composed of the values provided by the
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Fig. 3.1: Learned dictionary for byte patches (64-bytes by 1,024 elements)

sparse vectors, where each file fragment provides to the network a sequence of 15 sparse
vectors for each of its overlapping byte patches. The output layer is a standard softmax
over the 9 different file types such that the output of the network can be distinguished
as one of 9 classes. We use three hidden layers with the LSTM recurrent architecture (see
Section 2.2) with layer sizes of 128 neurons, 64 neurons, and 32 neurons going from the input
layer to the output layer, respectively. The activation function for the hidden layers is the
hyperbolic tangent (tanh). All layers are fully connected to the next layer. An illustration
of this design is provided in Fig. 3.2.

Between each of the hidden layers and between the output and final hidden layer we
employ 50% dropout during training as a regularization method for the network [17]. The
mechanism of dropout during training is to “drop out” or zero a percentage of the neurons
such that they have no effect on the subsequent layers. The effect of dropout on the network
is to encourage learning of redundant paths such that classification accuracy is maintained
in spite of this unreliability. During testing, the network is fully connected, and the weights
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Fig. 3.2: Design of recurrent neural network used for classification

are renormalized with respect to the percentage of dropout used during training.
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4. Results. For each file, we extracted 20 file fragments for a total of 90,000 file frag-
ments across all of the file types. Training was performed on 85,500 file fragments and
testing was performed on the remaining 4,500 fragments. To prevent bias during classifica-
tion, the file fragments used for testing were drawn from different files altogether than those
file fragments that were used for training. Dictionary learning was performed by iterating
over randomly shuffled and balanced batches of the training data using a sparsity penalty of
λ = 0.15 over two epochs with a batch size of 13,500 byte patches. Training was performed
with respect to categorical cross-entropy loss over 15 epochs with a batch size of 100 file
fragments. We used the RMSProp variant of gradient descent, which adaptively decays the
learning rate during training proportional to the average of the squared gradients [9].

We found that our approach produced good results. The average prediction accuracy
from file fragments to file types using this approach was 53.31% over 10 separate runs,
making it significantly better than random chance (1/9 ≈ 11.11%). Using the macro-
averaged F1 metric [16], which provides a weighted average of the precision and recall
of a classifier, we obtained an F1-score of 53.12%. The confusion matrix of a selected run
(accuracy = 53.56%) is given in Table 4.1. The prediction accuracy of 53.31% is competitive
with the results of existing approaches to file type classification based on file fragments
without the need to hand engineer features. A study by Veenman using Fisher’s linear
discriminant achieved an average prediction accuracy of 45% on 11 file types, and a study
by Fitzgerald et al. using support vector machines achieved a prediction accuracy of 49.1%
over 24 file types [20, 5].

Predicted class
elf html png gif gz pdf jpg aes doc

A
ct

ua
l

cl
as

s

elf 86.2 2.0 1.2 2.0 0.2 1.4 0.0 0.0 7.0
html 0.0 95.0 0.0 0.0 0.0 0.6 0.0 0.0 4.4
png 1.8 0.0 36.0 7.2 13.2 2.4 10.6 28.2 0.6
gif 1.2 0.4 8.2 69.2 2.0 2.0 7.2 9.0 0.8
gz 0.2 0.0 13.8 3.4 36.4 4.2 13.4 28.6 0.0
pdf 1.0 3.2 17.2 7.0 17.8 21.4 12.0 19.0 1.4
jpg 0.6 0.2 22.0 7.8 20.8 5.6 17.8 23.0 2.2
aes 0.0 0.0 21.4 2.6 20.6 0.8 9.8 44.6 0.2
doc 2.4 5.6 2.4 1.4 4.4 1.8 3.2 3.4 75.4

Table 4.1: Confusion matrix for file fragment classification for one run of the experiment

From these results, we see that fragments more likely to contain identifying patterns,
such as the tags in html or special formatting in doc, were those most easily classified. In
the feature space obtained through sparse coding, the fragments of these file types were more
likely to be reconstructed using repeating subsets of features, respectively. At the other end,
the fragments that gave the classifier the most difficulty were those that possessed relatively
high entropy with respect to the byte distribution (e.g. jpg, png, gz, aes). Falling into
a broader high entropy or “compressed data” category, these fragments were more often
confused with each other than confused with those more easily classified file types. A
noticeable bias made by our classifier for these fragments was to default to classifying as
aes when otherwise uncertain. This general behavior when confronted with high entropy
fragments is similar to what has been shown in previous studies [4, 5].

Drawing comparisons per file type, we look to the study performed by Fitzgerald et al.,
which, apart from providing state-of-the-art results, shares the greatest overlap in file types
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with ours [5]. Similar to what we provide in Table 4.1, Fitzgerald et al. also provides a
representative confusion matrix for a single run of the experiment. We find that those file
types that were easily classified through our approach, such as html or doc, were classified
as well or better than the existing method of hand-engineered features. In the case of doc,
our prediction accuracy was 75.4%, compared to 58.0% in Fitzgerald et al. There were also
file types, generally in the broader high entropy category, where our approach performed
less well. For example, our prediction accuracy for png files was only 36.0%, compared to
62.5% in Fitzgerald et al. At the same time, we had slightly better results for gz files, 36.4%
compared to 24.8%. Incidentally, file fragments such as gz were more commonly mistaken
for png in Fitzgerald et al. whereas they were more commonly mistaken for aes in our
study. Overall, both approaches provided comparable results.

5. Conclusions. File fragment classification is an important step in the task of file
carving in digital forensics. We have presented a sparse coding approach to feature extrac-
tion from file fragments for the goal of classification among different file types based on
their content. With respect to training a classifier, we found that the features automatically
extracted using this approach were competitive with the hand-engineered features of ex-
isting approaches. Furthermore, sparse coding leads to efficient training of state-of-the-art
classification algorithms such as with LSTM by adhering to appropriate transformations of
the input as discussed in Section 2.1. Although sparse coding may be used for automatic
feature extraction without the need for hand-engineered features, extensions to the current
approach by leveraging domain expertise may be valuable in producing still more accurate
classifiers.
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Software and High Performance Computing

The articles in this section discuss the implementation of high performance computing
(HPC) and productivity software. In many cases, performance improvements and portabil-
ity are demonstrated for many-core architectures, such as conventional multicore CPUs, the
Intel Many Integrated Core coprocessor (MIC), and graphical processing units (GPU).

Bello-Maldonado, Ober, and Belcourt use the Kokkos library to implement task par-
allelism for two computational kernels of an existing MPI-parallel Discontinuous Galerkin
code, targeting high-throughput architectures based on GPUs. They demonstrate speedup
for both kernels over a wide range of problem sizes and basis polynomial orders.

Bookey, Holmen, and Hu create an algebraic multigrid solver designed for problems
discretized on structured meshes. The solver is implemented in Kokkos in order to achieve
performance portability, and a new Kokkos data structure is also implemented to take
advantage of the assumed structure of the matrices. Scaling results are presented and
compared with scaling achieved using the MueLu solver, which does not take advantage of
grid structure.

Bourgeois and Wolf use the High Performance ParalleX runtime system to develop a
distributed-memory, task-parallel versino of miniTri, a miniapp that performs linear algebra
based triangle enumeration, which is a common graph analytics algorithm. They focus on
the interplay between task parallelism and data partitioning structure and achieve good
scaling to 16 nodes with 24 cores per node.

Garcia de Gonzalo, Hammond, and Trott enhance Kokkos’ runtime capabilities by devel-
oping a dynamic autotuner tool that attempts to find the optimal set of runtime parameters
for a particular hardware architecture and a particular matrix sparsity structure. The au-
totuner achieves this goal by cycling through all possible parameter combinations during
the first invocation of the kernel, so many kernel applications are required to overcome this
overhead. The automation of this process significantly reduces the burden of the appli-
cation programmer in achieving performance portability. They present results for several
architectures and many matrices, and they demonstrate that in many cases the autotuner
significantly increases overall performance.

Held and Bradley use Kokkos to implement thread parallelism for the Green-Gauss
gradient calculation algorithm, which is a key kernel for the Sandia Parallel Aerodynamics
and Reentry Code (SPARC). The algorithm involves looping over all faces in the mesh, and
they explain the implementation differences for three different kinds of faces: interior faces,
faces on element block boundaries, and faces on the domain boundary. Performance results
show superior GPU performance for solve-dominated problems.

Hota and Moreland investigate the effects of different optimization strategies on the
vectorization performance of illustrative algorithms for visualization. They propose a general
method for achieving efficient vector performance with the VTK-m framework in a way that
is invisible to the algorithm developer. In some cases, 2x speedup is achieved.

Juedeman and Cook use the PerfMiner hardware performance counter collection util-
ity to verify previous findings about bottlenecks in the performance of the LULESH shock
hydrodynamics mini-application using the MuMMI application performance profiling and
optimization tool. They verify that MuMMI correctly identifies areas of interest for opti-
mization and expand on the previous study by using PerfMiner to keep track of events not
recorded by MuMMI in typical runs.

Kelley, Hoemmen, and Siefert refactor and optimize the implementation of the block re-
laxation preconditioning algorithm in Ifpack2, a Trilinos package. They change the memory
layout of block matrices to make better use of cache and replace Tpetra MultiVectors with
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Kokkos Views, and achieve significant speedup. They also add YAML as a user-friendly
alternative to XML for Trilinos ParameterLists.

Perez and Littlewood develop a fast recursive descent equation parser in C++, which can
be used to apply initial conditions, time-dependent boundary conditions, and other expres-
sions not known at compile time to simulations on high-performance computing platforms.

Stevens and Edwards extend Kokkos’ task parallel capabilities by implementing task
team collective operations, such as reduce and scan, for CUDA, OpenMP, and serial back
ends. In doing this, they allow teams of threads to take advantage of internal data par-
allelism that may exist within a task. Such intra-task data parallelism arises in Cholesky
factorization and other commonly used numerical methods. The new implementation uti-
lizes the GPU more fully than native CUDA, since it allows smaller task team sizes and
avoids tasks that do not have enough parallel work.

J.B. Carleton
M.L. Parks

December 15, 2016
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ACCELERATING DGM WITH GRAPHICS PROCESSING UNITS AND
KOKKOS

PEDRO D. BELLO-MALDONADO∗, CURTIS OBER† , AND KENNETH BELCOURT‡

Abstract. The use of numerical computing has seen a rapid increase in the past several years as
simulations became the go to approach for product development and scientific discovery. Implemented in
the code named DGM, the Discontinuous Galerkin method is one of the most popular computing tools due
to its versatility in adapting to meshes with mixed elements, as well as its better accuracy and general
numerical properties. A GPU parallelization with Kokkos[5] was added to DGM, achieving improvements
of twice the speed when considering the communication time and 20x the speed without communication.
This initial implementation aims to serve as proof of concept for further development in the future in order
to demonstrate how GPU computing can significantly improve the execution time of DGM.

1. Introduction. Given the rise in computing power over the last 50 years, computer
simulations have become a key component in the development of new products and services.
Companies save millions of dollars every year by testing their products using computers
instead of building disposable prototypes. Furthermore, better and better simulation tools
and methods have been developed by scientists and engineers to improve the quality of the
results and reduce the time to completion. This trend has been seen in all sectors of the
economy from engineering to finance, and the demand for skilled workers in these fields is
expected to grow significantly in the next years.

While the computing resources are mostly available to anyone through funding agen-
cies like the National Science Foundation (NSF) and the Extreme Science and Engineering
Discovery Environment (XSEDE) program or private clusters, utilizing these resources can
be daunting for non-computing experts. Furthermore, with newer computing architectures
emerging every year it is hard to determine what the best option is when choosing a platform
for running a particular simulation. Different systems offer different features that may be
well suited for a specific application, while being the wrong choice for a different one. Even
if it is clear that a certain platform is the right choice for an application, developing code to
maximize resource usage often requires significant effort. For this reason, new programming
tools that aim to overcome this issue are being developed to maximize the performance
of applications while keeping them simple for non-experts to use. Compilers are also get-
ting smarter and smarter at determining how code translates to machine instructions that
make use of the resources effectively. In this work we focus on one of these tools named
Kokkos, which is used for on-node parallelism, and a new computing method known as the
Discontinuous Galerkin (DG) method for the solution of partial differential equations. Our
main objective is to reduce the execution time of a DG code using graphics processing units
(GPUs).

The rest of this paper is organized as follows. In Section 2 we introduce the DG method
at a very high level and a code named DGM that implements it. Also a survey of GPU
computing tools is listed so as to convey where Kokkos lies in the spectrum of programming
tools for GPUs. We present here the basics of the Kokkos library and show a simple example
so the reader appreciates how easy it is to use. Section 3 describes the approach used to
accelerate a portion of DGM that fits well in the GPU programming paradigm. Results of
our efforts are summarized in Section 4 with plots of the speedups achieved. Finally we
conclude our work in Section 5.

∗Dept. of Computer Science, University of Illinois at Urbana-Champaign, belloma2@illinois.edu
†Sandia National Laboratories, ccober@sandia.gov
‡Sandia National Laboratories, kbelco@sandia.gov
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2. Background. In the realm of scientific computing, the numerical solution of partial
differential equations (PDEs) is at the core of scientific discovery and product development.
These equations describe many physical systems involving multiple independent and depen-
dent variables, making them almost impossible to solve in closed form (i.e. the solution is
given by a function or set of functions satisfying the equations exactly). Many numerical
methods have been proposed to address this issue. The general approach in these methods
is to decompose the domain (i.e. the physical space where the physics is happening) into
many well-defined, disjoint elements and to use them to solve the equations at a set of dis-
crete points (e.g. nodal methods). Other approaches aim to approximate the solution using
interpolation where the unknowns become the coefficients in the interpolating function (e.g.
modal methods) [13, 2, 3].

In either case the computational complexity of the method can be very expensive if the
solution is to be very accurate. Accuracy can be improved by increasing the number of
elements, known as h-refinement, or increasing the polynomial degree of the basis functions
in each element, known as p-refinement. Furthermore, for time evolving PDEs, different
time-stepping approaches are possible that can be of explicit or implicit nature, each with
its own advantages and disadvantages [8, 10].

2.1. The Discontinuous Galerkin Method and DGM. One of the numerical
methods for the solution of PDEs is the Discontinuous Galerkin Method (DG). DG methods
combine features of the Finite Element method (FE) and the Finite Volume method (FV)
to overcome the challenges each one has with respect to accuracy, hp-adaptivity, and explic-
it/implicit time-stepping. Solutions to the PDE are locally approximated in the Galerkin
sense (i.e. the residual is minimized using the weighted residual formulation at each ele-
ment), which causes discontinuous solutions at the element interfaces. In order to pick one
solution, fluxes are used as in the FV method and in this way the discretization is complete
and the solution unique [6].

Many codes are available for the discretization of PDEs with DG. In this work we
focus on DGM [15]. The code features discretization in space using mixed nodal and modal
representations, as well as a suite of time integrators with many examples of different classes
of PDEs (e.g. Navier-Stokes, advection-diffusion, Poisson, etc.).

2.2. Parallel Computing and Accelerators. Once the problem being solved gets
too large to fit on a single machine or too expensive to run in a timely manner, high
performance computing becomes the go to tool. In this computing paradigm, the problem
is broken down and distributed across multiple processors that compute the solution in
parallel. Significant speed improvements can be achieved with enough computing units.
Furthermore, specialized hardware designed to maximize computational throughput can be
used to further accelerate the execution time of the application. Currently, two architectures
are the most widely adopted in supercomputing clusters: graphics processing units (GPUs)
and Intel Xeon Phi coprocessors (the newest version is not a coprocessor anymore. See Intel
Knights Landing).

Different programming tools are available for GPU computing. For NVIDIA GPUs
the Compute Unified Device Architecture (CUDA) programming model is the standard
for programming the accelerators [7]. CUDA is an extension to the C/C++ language that
supports GPU computing and provides routines to manage memory and run functions (called
kernels) on the GPU. A similar tool that supports other GPU vendors, as well as NVIDIA,
is the OpenCL library. Both of these tools work very close to the hardware and require the
user to carefully map computational work to the manycore architecture on the GPU. Higher
level programming libraries such as OpenACC and OpenMP 4.0 make it easier and faster for
programmers to write GPU code without worrying about the underlying architecture at the
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expense of performance [14, 12]. In these cases the programmer instruments the sequential
code with compiler directives that aid the compiler in deciding how to port the code to the
GPU and run it.

A third category of programming models for GPUs and other multithreaded architec-
tures aims to use abstractions to describe the parallel computation so it can be run on
different architectures. These tools provide a “write once, run everywhere” approach that
enables parallelism without writing code for each different platform. Some examples include
the Kokkos library in Trilinos [11], VTK-m [9], and Loo.py [1].

2.3. The Kokkos Library. The Kokkos library implements a programming model in
C++ for writing performance-portable applications targeting all major high performance
computing (HPC) platforms [5]. Architectural features are abstracted so the user need not
worry about the specifics of the platform the code is to be run on.

Abstractions in Kokkos have the following forms:
• Memory Space: Describes where the data resides (e.g. device memory, host mem-

ory)
• Execution Space: Describes where the functions are executed (e.g. GPU, XeonPhi,

CPU)
• Execution Policy: Describes how and where a user function is executed (e.g. con-

currently call function f (i) for i = [0, n))
• Pattern: Describes the execution pattern (e.g. parallel for, reduce, scan, or task)

In Listing 1 a simple example of Kokkos code is presented. The Kokkos::View object
is a smart pointer that allocates memory on the memory space defined at compile time or
specified in one of the template parameters. Then we launch a kernel on the GPU using
Kokkos::parallel for with num elem threads and use the indexing to assign an initial
value to each element in the array. In this way, we are letting Kokkos define the underlying
distribution of thread blocks (or teams depending on the architecture) on the device. More
specific distributions of threads can be possible for finer control, as well. On the other hand,
it is possible to change the memory space and execution space by just recompiling the code
with the appropriate flags without changing the source code at all. For further details please
refer to the Kokkos documentation.

Listing 1: Kokkos example
// Create a view object that allocates data on the device
Kokkos::View<double*> array("array", num_elem);

// Launch a kernel and initialize the data
Kokkos::parallel_for(num_elements, KOKKOS_LAMBDA (const int i)
{

array[i] = initial_value;
});

3. Methodology. In order to support a large number of elements during simulation,
DGM was implemented in parallel using MPI [4]. The code has been run effectively on
hundreds of thousands of processors and has been tested on different platforms. However,
little effort has been put into migrating portions of the code to GPUs. Under the right
circumstances, significant improvements can be achieved with GPUs, and in this section we
explain our approach to parallelizing DGM with GPUs and Kokkos.

3.1. Element Blocks. The way a domain is meshed significantly impacts the perfor-
mance of any numerical method for PDEs. Good meshes represent the physical domain as
closely as possible, but using some element types may be too expensive or too hard to mesh.
DGM supports mixed elements, enabling a large number of possibilities for the modeler to
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achieve a good representation. This feature in DGM allows for meshing portions of the
domain with the same element shape, while other portions of the mesh may be meshed with
elements of different shapes. Computationally speaking this is very efficient since many
properties of the element are shared among identical elements thus reducing recomputing
of such properties. An example of this is the Jacobian of the element, which is used to map
the local element to the reference element. In DGM, an ElementBlock class is provided
for this purpose. All the elements in an ElementBlock object are aligned in memory as to
facilitate accessing the data of all the elements with a single pointer. This is a key feature
in the parallelization with GPUs since a single copy is possible from the host to the device
without worrying about padding the field data of each element in a contiguous array on the
device.

3.2. Functions of Interest. Maximizing efficiency on GPUs in order to achieve excel-
lent speedups is not always possible if the task being parallelized doesn’t fit the computing
paradigm. A good understanding of the code and the problem it solves is necessary before
parallelization efforts are put in place. Here, we show the functions of interest that we
propose to port to the GPU and their mathematical meanings.

3.2.1. The inner product Function. For integration reasons, field data of each
element needs to be multiplied by the basis functions in the discretization process. This
is accomplished by the inner product function in DGM. Mathematically speaking the
following steps achieve this. Let qa, qb, and qc be the number of quadrature points in the
x, y, and z directions, respectively. Also based on these quadrature points, the polynomial
degrees of the basis functions take the form La = qa − 1, Lb = qb − 1, and Lc = qc − 1. Let
u(e) be a vector of size qaqbqc with the field values for element e at the quadrature points,
and e = 1, . . . , E with E being the total number of elements in the block. Let û(e) be the
vector of size LaLbLc with field values at the modes for each element. Finally, let J be the
weighted Jacobian vector at the quadrature points and, Ba (size La×qa), Bb (size Lb×qb),
and Bc (size Lc × qc) be the matrices used to project onto the basis functions. Algorithm
3.1 implements this procedure.

3.2.2. The backward transform Function:. While projecting field data onto the
basis modes is accomplished with the inner product function, the inverse operation is
possible, as well. This is what the backward transform function does. Using the same
notation as before, Algorithm 3.2 shows the implementation in this case.

3.3. Parallelization. As described, both Algorithm 3.1 and 3.2, can be parallelized
in several ways. For starters, element computations are independent of each other. Each
individual element could potentially be assigned to a thread and computed in parallel.
Furthermore, the individual computations of each element are basic linear algebra routines
that benefit from manycore architectures. Listing 2 and 3 show the implementation of two
key portions of Algorithm 3.1: multiplying the Jacobian by the field (an element-to-element
vector multiplication that is represented as a diagonal matrix multiplied by a vector) and a
simple matrix-matrix multiplication. A very similar code is used for backward transform
since the math is effectively the same.

In Listing 2 we see a couple of new Kokkos features not shown before. Mainly the
TeamPolicy object. This object defines how threads are distributed and organized in
teams. The number of teams and the number of threads per team is given in the constructor
of the object. For each team, a TeamThreadRange object organizes the threads and gives
them IDs to be referenced in the body of the function where they are used. The CUDA
equivalent of teams and thread range, in this case, is thread blocks and threads in a one-
dimensional configuration. Kokkos manages the mapping automatically and takes care of
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Algorithm 3.1 inner product function description
Input: Number of quadrature points in each dimension, qa, qb, and qc. Number of modes

in each dimension, La, Lb, and Lc. Weighted Jacobian of the element, J. Matrices to
project onto the basis functions, Ba, Bb, and Bc. Field, u, for each element. Number
of elements, E. All matrices and vectors are assumed to be laid out in memory in
row-major ordering for reshaping purposes.

Output: Projected field onto the basis modes, û, for all the elements
1: procedure INNER PRODUCT

2: for e = 1 to E do
3: uw = diag (J)u(e)

4: Uw = reshape uw from qaqbqc to qa × qbqc
5: H ′ = BaUw

6: H ′′ = zero matrix of size La × Lbqc
7: for la = 1 to La do
8: H(la) = reshape H ′(la) from qbqc to qb × qc
9: R = BbH

(la)

10: H ′′(la) = reshape R from Lb × qc to Lbqc
11: H ′′ = reshape H ′′ from La × Lbqc to LaLb × qc
12: Û = H ′′B>c
13: û(e) = reshape Û from LaLb × Lc to LaLbLc
14: return û

Listing 2: Element-to-element multiplication of the field, u, by the weighted Jacobian, J
typedef Kokkos::Cuda Space;
typedef Kokkos::TeamPolicy<Space> TeamPolicyExec;
typedef Kokkos::TeamPolicy<Space>::member_type MemberTypeExec;

Kokkkos::parallel_for(TeamPolicyExec(num_elem, num_threads),
KOKKOS_LAMBDA (const MemberTypeExec& team_member)

{
const int e = team_member.league_rank();

Kokkos::parallel_for(Kokkos::TeamThreadRange(team_member, q_a * q_b * q_c),
[=] (const int i)

{
u[e * (q_a * q_b * q_c) + i] *= wJ[i];

});
});

the correct indexing at the boundaries. Finally, in the body of the function each element
is indexed by e * (q a * q b * q c) and each quadrature point is multiplied by the
Jacobian. Notice that this is only possible because the elements in an ElementBlock have
consecutive memory addresses separated by blocks of size qaqbqc. We are not showing the
view allocation here, but it suffices to say that u and wJ reside in global memory on the
device and have the correct data.

For Listing 3, a basic matrix-matrix multiplication is implemented for each element. The
structure is similar to that of the element-to-element multiplication code, but another layer
of parallelism is included. The ThreadVectorRange object adds an extra dimension to the
thread teams. For that reason, in the constructor of the TeamPolicy object, two arguments
are given defining the block size in each dimension. The Kokkos library computes the number
of blocks necessary to cover the ranges in TeamThreadRange and ThreadVectorRange,
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Algorithm 3.2 backward transform function description
Input: Number of quadrature points in each dimension, qa, qb, and qc. Number of modes

in each dimension, La, Lb, and Lc. Matrices to project onto the basis functions, Ba,
Bb, and Bc. Projected field, û, for each element. Number of elements, E. All matrices
and vectors are assumed to be laid out in memory in row-major ordering for reshaping
purposes.

Output: Field value on the grid points, u, for all the elements
1: procedure BACKWARD TRANSFORM

2: for e = 1 to E do
3: Û = reshape û(e) from LaLbLc to La × LbLc
4: Ĥ

′
= B>a Û

5: Ĥ
′′

= zero matrix of size qa × qbLc
6: for q = 1 to qa do

7: Ĥ
(q)

= reshape Ĥ
′(q)

from LbLc to Lb × Lc
8: R̂ = B>b Ĥ

(q)

9: Ĥ
′′(q)

= reshape R̂ from qb × Lc to qbLc
10: Ĥ

′′
= reshape Ĥ

′′
from qa × qbLc to qaqb × Lc

11: U = Ĥ
′′
Bc

12: u(e) = reshape U from qaqb × qc to qaqbqc
13: return û

automatically. In the body of the function, a simple loop is used to compute each element
of the output matrix, which is equal to the inner product of a row of the first matrix and
the column of the second matrix. In this way, the order of operations does not affect the
value of the output compared to the sequential implementation, and both values should be
exactly the same. This was not by design, and some accuracy could be sacrificed in spite
of more parallelism but that is left for future optimizations of the code. The remaining
portions of the routine have similar implementations and thus are not shown here.
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Listing 3: Matrix-matrix multiplication of the basis function matrix and the reshaped
Jacobian-multiplied field
Kokkos::parallel_for(TeamPolicyExec(num_elem, block_y, block_x),

KOKKOS_LAMBDA (const MemberTypeExec& team_member)
{

int e = team_member.league_rank();

Kokkos::parallel_for(Kokkos::TeamThreadRange(team_member, num_modes),
[=] (const int i)

{
Kokkos::parallel_for(Kokkos::ThreadVectorRange(team_member, q_b * q_c),

[=] (const int j)
{

double* A = Ba;
double* B = u + e * (q_a * q_b * q_c);
double* C = Hp + e * (L_a * q_b * q_c);

double sum = 0.0;

for (int k = 0; k < q_a; k++)
{

sum += A[i * q_a + k] * B[k * (q_b * q_c) + j];
}

C[i * (q_b * q_c) + j] = sum;
});

});
});

4. Results. Our tests were run on the Shannon test bed in interactive mode. The
specifications per node are:

• Two 8-core Sandy Bridge Xeon E5-2670 @ 2.6GHz
• 128GB DDR3-1600MHz
• 2x NVIDIA K20 GPUs

– 2688 CUDA Cores
– 732MHz Clock rate
– 5760MB Global memory

• RHEL 6
We performed 5 runs of each test and averaged the results. In analyzing the effectiveness

of our algorithm, the number of elements is varied as well as the polynomial degree of the
basis functions in each element. DGM provides an executable to generate a cubic mesh
with hex elements of the same structure. Listing 4 shows the command to generate a
computational mesh. Notice that the code generates a linear grid of multiple elements of
size 1× 1× 1 in the x-direction. Other tests with a cubic grid of elements did not influence
the speedups and the results were equivalent.

Listing 4: Mesh generation with DGM (Python string formatting)
"dgm_mesh.exe -nsd 3 -nx %d -ny 1 -nz 1 -x0 0.0 -y0 0.0 -z0 0.0 -Lx %f -Ly 1.0 -Lz 1.0 -r

3d" % (E, E)

Figures 4.1-4.4 show the measured speed improvements for a HexBlock of size 8, 16,
32, 64, 128, 256, and 512, with and without the cost of communication for both functions
of interest. In this case, communication means the data transfer between the CPU and the
GPU. As we can see, with more grid points to work with, the speed improvement increases
since the communication cost has less effect on the overall computation. Furthermore, a
higher polynomial degree also means better performance, as a higher polynomial means
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Fig. 4.1: Overall speedup of inner product function
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Fig. 4.2: Speedup of inner product function without communication

more grid points per element. However, this trend is not seen when the communication cost
is not taken into account. As we can see from Figure 4.2 or 4.4 the configuration with the
best performance is a hex element with p = 14. This is true regardless of the number of
elements. We believe that, because p = 14 means p + 2 = 16 grid points in each direction,
an element with 163 = 4096 grid points fits exactly in one memory page and so it is very
efficient, but further investigation is needed.

When looking at the overall execution and not just each individual function, an overall
speedup gain is also achieved under the right conditions. Figure 4.5 shows these results. As
we can see, a total of 5% improvement is seen for a run with 1000 time-steps. We expect
that with more portions of the code ported to the GPU larger improvements will be seen.
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5. Conclusions. Numerical applications benefit greatly from the computing power of
GPUs since computation can be broken into small, lightweight pieces that can be mapped
efficiently onto the many core architecture of the GPU. However, in order to maximize
performance, a careful mapping of the tasks is needed, and this can’t be done without
significant understanding of the architecture. Tools like Kokkos facilitate the parallelization
process by abstracting the hardware and generalizing parallel work so multiple platforms
can be covered. We showed that improvements of twice the speed are possible even when the
communication is present and a relatively low number of elements are available. The results
show that increasing the total amount of work manifests into higher speedups. Furthermore,
if communication is ignored, huge improvements are seen since transferring data from the
CPU to the GPU is the bottleneck of GPU computing in general. Future generations of
GPUs will share the memory space with the CPU so we expect to see even faster GPU code
in the near future. On the other hand, this initial approach to GPU parallelization of DGM
aims to demonstrate how GPUs can be used with Kokkos in accelerating the application.
Based on the results obtained, we can move forward and target more portions of the code
that fit well on the GPU, and we expect to see a reduced computing time of DGM as a
whole.
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KOKKOS-BASED STRUCTURED GRID MULTIGRID SOLVER

ZACHARY A. BOOKEY∗, JOHN K. HOLMEN† , AND JONATHAN J. HU‡

Abstract. Multigrid is a provably scalable solution method for certain linear systems that arise from
discretizing elliptic partial differential equations. This project sought to create a multigrid solver that is
designed for problems discretized on structured meshes. The resulting solver utilizes the Kokkos library [15]
to allow for performance portability across many architectures. Kokkos was used in creating a sparse
matrix storage object that uses knowledge of the problem structure in an attempt to avoid some memory
accesses needed for the compressed row storage format. A so-called “black box” multigrid solver is created
using Kokkos, a structured grid matrix format, and coarsening based on ideas in [20]. Various smoothing
algorithms are compared using this proof-of-concept.

1. Introduction. Multigrid methods are a class of provably scalable solvers for certain
linear systems arising from elliptic partial differential equations (PDEs). Efficiently solving
PDEs is a key computational task in many computer simulations, and the multigrid methods
in the Sandia/Trilinos [10]. project are often employed. These methods are algebraic in
nature, meaning they do not leverage simulation-specific information. In fact, the existing
methods presume that the underlying meshes are unstructured.

In this paper, we present a multigrid method for systems arising from fully structured
hexahedral meshes. The structured nature of these meshes allows matrix storage and opera-
tions to be handled more efficiently than is possible for general unstructured sparse matrices.
This in mind, the proposed algorithm is algebraic, rather than geometric. This is advan-
tageous because it frees the application from having to generate additional data for the
multigrid method, apart from the linear system itself. The coarse matrices that are pro-
duced by the algorithm discussed here are fully structured, and, thus, amenable to the same
improvements in storage and operation efficiency. We refer to this algorithm as structured
grid algebraic multigrid, or SGAMG for short. SGAMG leverages Sandia’s Kokkos library
[15] to manage low-level data storage and facilitate node-level parallelism. By using Kokkos,
we hope to gain performance portability across various architectures.

This paper provides a brief introduction to multigrid and the Kokkos software package in
sections 1.1 and 1.2. We discuss the Kokkos class that was created to take advantage of the
assumed structure of these matrices in section 2. We then describe the SGAMG algorithm
used to both create these matrices and solve the problems they represent in section 3. We
cover basic smoothing algorithms and pseudocode to demonstrate how they were adapted
to use the proposed data format in section 4. Finally, we compare SGAMG to a similar
multigrid driver within the MueLu software package [16] in section 5.

1.1. Introduction to multigrid. Multigrid is a provably scalable method for solving
certain classes of linear systems Ax = b.1 In a multigrid solver, a hierarchy of coarser
resolution systems is generated and used to accelerate the solution of the problem of interest.
This problem of interest, typically supplied by the application, is referred to as the fine grid
system. Each linear system within the hierarchy has a solver associated with it, called a
smoother. The smoother is typically an inexpensive iterative method such as Jacobi or
Gauss-Seidel, but may also be a more expensive solve, such as an incomplete factorization.
Information is transferred between the various systems in the hierarchy by matrices called
restrictors and prolongators. Collectively, these matrices are called grid transfers. The

∗Saint John’s University/University of Minnesota, zabookey@csbsju.edu/booke038@umn.edu
†Scientific Computing and Imaging Institute, University of Utah, jholmen@sci.utah.edu
‡Sandia National Laboratories, jhu@sandia.gov
1Multigrid can be applied to nonlinear systems, as well, but that is not the focus of this paper.
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Algorithm 1.1 Pseudocode for an N -level multigrid V-cycle schedule. Here, k is the grid
level, P is the prolongator, R is the restrictor, and S is the smoother.
A0 = A
function VCycle(Ak, b, x, k)

// Solve Ak x = b (k is current grid level)
x = Sk(Ak, b, x)
if (k 6= N− 1) then

rk+1 = Rk(b−Akx)
Ak+1 = RkAkPk // Normally performed during the startup phase
z = 0
VCycle(Ak+1, rk+1, z, k + 1)
x = x+ Pkz
x = Sk(Ak, b, x)

else
x = ScN−1(AN−1, b, x)

pseudocode for a multigrid V-cycle, a typical schedule for visiting the different multigrid
levels, is given in Algorithm 1.1. Note that, subscripts featured within Algorithm 1.1 are
excluded throughout the remaining discussion as this work emphasizes two-level methods.

The main idea of multigrid is that the smoother for the fine grid system efficiently
reduces certain high energy solution error components. All other error components are
reduced on some coarser level of the hierarchy by that level’s smoother.

There are two main classes of multigrid methods. The first class, geometric multigrid,
requires rediscretizing the PDE on a coarser resolution mesh. Grid transfers are created by
appropriately interpolating between two levels. In the case of finite elements, this boils down
to interpolating between finite element basis functions on two consecutive levels. In any case,
the grid transfers are problem-specific and require close interaction with the application.
The second class of multigrid methods is algebraic multigrid. In this class, the application
supplies only the fine grid system, and the multigrid algorithm generates the grid transfers
and coarse grid systems. For more information on multigrid, see [13, 19].

1.2. Introduction to Kokkos. With the increasing diversity among current and
emerging architectures, it is growing more difficult to write a single piece of code that
performs optimally across multiple architectures. To address this challenge, the Kokkos
library was developed to facilitate performance portability via an added layer of abstraction
between a developer and the target architecture. This abstraction allows a developer to
compile code optimized for a target architecture, which is specified at compile time. Kokkos
accomplishes this through the use of memory spaces and execution spaces. These
constructs are used to manage where data resides and where a function executes. For ex-
ample, memory spaces allow Kokkos to layout data in a manner amenable to the target
architecture. Similarly, execution spaces allow Kokkos to dispatch parallel code lever-
aging backends for a variety of parallel programming models. Currently, Kokkos supports
the following execution spaces:

• Serial
• PThreads [12]
• OpenMP [7]
• Cuda. [1]

A Kokkos View is a multidimensional array that stores data in the user specified
memory spaces. On top of allowing the user to specify which memory spaces to use,
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Views allow the user to specify different data layouts and memory access patterns, or use
the defaults for the given memory spaces. Views also manage their own allocations and
will deallocate themselves when they are no longer referenced.

Kokkos parallel dispatch consists of three types of kernels: for, reduce, and scan.
parallel for executes a generic for loop by dividing the work among the user specified
number of threads. parallel reduce acts like the former, but asynchronously updates a
variable with either the default or user defined init and join methods to handle how each
thread initializes its update variable and combines its results with the rest of the threads.
parallel scan keeps a running sum of the values in a View and places the current sum
in the corresponding location.

2. Matrix Data Storage for Structured Meshes. Since the underlying mesh is
structured, the resulting matrix features a regular stencil pattern. Therefore, the first
objective was to create a Kokkos-based matrix that will exploit this inherent structure.
These structured matrices are often sparse which encourages the use of a sparse matrix
storage format. The resulting structured grid matrix (SG) format is motivated by the
compressed row sparse (CRS) matrix format but utilizes some knowledge of the structure
of the matrix to avoid unnecessary memory accesses.

The traditional CRS format stores three arrays, rows, inds, and vals. inds has
length equal to the number of matrix nonzeros and contains the corresponding column index
for each nonzero matrix entry. vals has length equal to the number of matrix nonzeros
and contains all the nonzero values in the matrix. rows has length n + 1, where n is the
number of rows in the matrix. rows{i} . . .rows{i + 1} − 1 are the indices into inds and
vals for column and value information for row i.

The proposed SG format utilizes knowledge about both the grid and stencil to store
two arrays. The first array stores values corresponding to each nonzero entry within the
sparse matrix. The second array stores column indices corresponding to each nonzero entry
within the sparse matrix. Figure 2.1 demonstrates the differing storage patterns utilized by
the CRS and SG formats.

Note that in Figure 2.1, it is possible for the second array used by the SG format to
feature unused entries within a given row (as indicated by the −1). In the event that a row
features unused entries, a −1 is stored in these locations to help identify the termination
of the row. This has been done to simplify the process of obtaining a given row’s nonzero
entries. When using the CRS format, a user must compute the start and end indices of such
entries using the row map and then use these values to obtain the corresponding indices and
values for each nonzero entry. When instead using the SG format, a user need only multiply
the row index by the row width. This, however, is achieved at the expense of additional
storage for unused entries and conditionals used to indicate the termination of a row (e.g.
when performing matrix-vector multiplication).

The SG format can be found in the SGMatrix def.hpp and SGMatrix decl.hpp
files. This templated structure allows the user to specify what type of data the values are,
the type of ordinals used to access data, which Kokkos Device to use, and specific memory
access traits. SGMatrix consists of a pair of two-dimensional Views of size n × s where n
is the number of rows and s is the size of the structures stencil. These views are stored as
1-dimensional arrays on which ever memory spaces is denoted within the Kokkos Device.
The SG format can be sorted so that for each rows chunk, the diagonal value is the first
value available and the rest of the values are in descending order so that the -1 invalid flags
are all at the end of the chunk.
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Fig. 2.1: The blue and salmon arrays correspond to the storage utilized by the CRS format.
Specifically, the salmon array stores the map of row pointers, which are used to index the blue
arrays when storing column indices and values for nonzero entries within a sparse matrix.
The green arrays correspond to the storage utilized by the SG format. Specifically, the
green arrays store the column indices and values for nonzero entries within a sparse matrix.
Note that, locations featuring a −1 are unused and indicate that a given row features fewer
nonzero entries than the size of the stencil. This example depicts the storage of a 5 × 5
tridiagonal matrix.

3. The SGAMG Algorithm. Prior to starting a V-cycle (or similar scheme), two
structured matrices must be available in order to setup the SGAMG hierarchy. Specifically,
one must have the top-level (finest) matrix describing the target problem, A0. This matrix
would normally be supplied by the calling application, but for this paper, it is generated
in the driver program. In order to generate A0, we first generated a structured mesh that
establishes the adjacency list for points within the top-level matrix. Using this mesh, the
top-level matrix is constructed by identifying adjacent neighbors and applying stencils to
describe the target problem. The second required matrix is the prolongation matrix, P .
Once this and A0 are available, we can then compute the Galerkin product, PTA0P , which
generates the corresponding coarse matrix, A1. For purposes of this paper, we consider only
the two-level method, but in theory, this idea can be applied recursively.

The key idea of the SGAMG algorithm is to apply semi-coarsening in each mesh di-
rection, and then combine the resulting 1D interpolation basis functions into a final 2D or
3D interpolation basis function. The semicoarsening used in SGAMG is the same as the
semi-coarsening algorithm described within [20]. The approach in that paper is to collapse
the PDE underlying A0 to a unidirectional operator along a single dimension. This is ac-
complished by summing contributions from adjacent points within each row/column of the
stencil for a given point within A0 as depicted in Figure 3.1.

Whereas [20] only considers semicoarsening in one or two dimensions, our approach
semicoarsens in all mesh directions. The result of this semi-coarsened process is a set of
unidirectional basis vectors for each coarse point within the matrix: two for 2D and three
for 3D. These basis vectors are then combined via a tensor product, yielding a 2D or 3D
basis vector for each coarse point. Once all coarse points have been processed, the resulting
prolongation column vectors are combined into the final prolongation matrix P , at which
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Fig. 3.1: Horizontal and vertical collapsing of a 9-point stencil. When collapsing horizontally,
elements within a given column are summed and the results are stored in the middle row.
When collapsing vertically, elements within a given row are summed and the results are
stored in the middle column.

point the coarse grid can be generated via the Galerkin product.

3.1. Software implementation. To implement this functionality within our proof-of-
concept, SGMatrix matGen.hpp was created with three supporting functions: buildTopLevel(),
buildCollapsed(), and buildP(). When implementing this, an effort was made to
generalize indexing via the Tpetra::Map [9] object. This was done to enable use of the
Tpetra::Import and Tpetra::Export classes to ease the integration of MPI [6] in the
event that distributed-memory parallelism is introduced as future work. Additionally, an
effort was made to generalize buildCollapsed() and buildP() to accept an arbitrary
structured matrix in the SG format. This was done to facilitate the generation of P for
subsequent levels within the multigrid hierarchy. These functions are described in detail
within Sections 3.1.1–3.1.3.

3.1.1. Function buildTopLevel(). This function generates the top-level matrix,
A0, for a target multigrid hierarchy and stores it within the SG format. In its current
state, this function supports the generation of 2-dimensional constant-coefficient problems
featuring either a 5-point or a 9-point stencil. Note however that the semi-coarsening process
produces a coarse matrix, A1, which features a 9-point stencil regardless of the size of the
stencil used for A0.

The core functionality of buildTopLevel() is based upon supporting functions2 used
within Galeri’s BuildProblem() [2]. A custom implementation of BuildProblem() was
created to minimize intermediate storage requirements when storing A0 in the SG format.
This decision also allows for easier integration of Kokkos in the event that this function is
parallelized as future work.

When building the top-level matrix, problem construction is based upon a map that
establishes the adjacency list used to generate the sparse matrix corresponding to A0. Fol-
lowing suit with Galeri, this map features 0-based indexing, which begins in the bottom-left
corner and proceeds from left-to-right then bottom-to-top as depicted in Figure 3.2. With
this in mind, the algorithm loops over each point within the map and populates the corre-
sponding row of A0 with both the value and column index for itself and adjacent points. In

2Supporting functions that buildTopLevel() are based upon can be found in
\Trilinos\packages\galeri\src-xpetra\Galeri XpetraMatrixTypes.hpp [11]
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its current state, this serial algorithm leverages a single for loop featuring a number of
conditionals to check existence of each possible adjacent neighbor when populating A0.

Fig. 3.2: Map used to generate the sparse matrix corresponding to A0 for a problem featuring
5 points in each dimension.

3.1.2. Function buildCollapsed(). This function semi-coarsens A0, generating
intermediate tridiagonal matrices that are needed to construct the grid of prolongation
column vectors, P . Specifically, this function populates arrays that correspond to semi-
coarsened matrices of A0 for each dimension. These arrays are specially formatted to be
passed as input parameters to Lapack’s DGBSV() function [4]. This function is used to
solve systems of banded linear equations within buildP().

The core functionality of buildCollapsed() is based upon the semi-coarsening al-
gorithm described within [20]. In its current state, this function supports the collapsing
of arbitrary structured grids corresponding to 2-dimensional problems featuring either a
5-point or a 9-point stencil. To accomplish this, the algorithm loops over each point within
the map depicted in Figure 3.2 and collapses the PDE along both the x- and y-dimensions.
As with buildTopLevel(), the current serial algorithm leverages a single for loop fea-
turing a number of conditionals to check existence of adjacent neighbors when performing
the collapsing procedure.

When collapsing a given point, it is important to note that there is special handling
for points on the fine grid that correspond to points on the coarse grid. Such points are
injected into the coarse grid rather than being semi-coarsened via the collapsing procedure.
This injection is facilitated via parameters that define the distance between coarse points
for each dimension. These distances enable the identification of coarse grid points on the
fine grid. Note that, the bottom-left corner of the coarse grid is arbitrarily defined as being
offset from the bottom-left corner of the fine grid by 1 in each dimension. An example of
the relationship between fine grid points and coarse grid points can be seen in Figure 3.3.

3.1.3. Function buildP(). This function generates the matrix of prolongation col-
umn vectors, P, that is used to generate a coarse grid via the Galerkin product. To accom-
plish this, a variety of intermediate steps are needed to move from the tridiagonal matrices
generated by buildCollapsed() to the final form of P . At a high-level, this involves
solving a system of banded linear equations for each coarse point, extracting nonzero entries
from these solutions, computing their tensor products, and assembling P . An example of
this process can be seen in Figure 3.4.

In its current state, this function supports the generation of P for 2-dimensional prob-
lems that generate basis column vectors conforming to an assumed structure. To accomplish
this, the current serial algorithm loops over each coarse point within the map depicted in
Figure 3.3 and generates the corresponding prolongation column vectors.
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Fig. 3.3: Map indicating fine grid points from A0 in Figure 3.2 that are injected into the
coarse grid, A1, for a problem featuring 5 points in each dimension with coarse points spaced
3 and 2 points apart in the x- and y-dimensions, respectively. Points labeled with a ” − ”
are not injected into the coarse grid and are, instead, semi-coarsened via the collapsing
operation.

Fig. 3.4: For each coarse point in A1, a basis column vector is generated from the horizontally
and vertically collapsed matrices (on the left). Nonzero entries within the basis column
vectors are extracted and their outer product is computed (in the middle). Columns from
the result of the outer product are then extracted and used to assemble a column of P (on
the right).

4. Smoothers. The key to multigrid lies in the complementary nature of the smooth-
ing and correction of error between the current solution and actual solution. The smoother’s
role is to quickly remove high energy error. However once the error is damped, the con-
vergence of the smoother stagnates and correction comes into play by solving Acec = R ∗ r
(where the fine level residual r = b− Ax is restricted to the coarse level designated by Ac)
and updating the fine approximate solution x by x = x + P ∗ ec (where the coarse error
approximation ec is interpolated to the fine level). Updating x may reintroduce high energy
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error components, so smoothing is applied again.
Three iterative methods commonly used as smoothers in multigrid are as follows. For

more information see [17].
• Jacobi
• Chebyshev
• Gauss Seidel.

In our work we implemented a Kokkos version of each smoother that is designed for matrices
in the SG format. Pseudocode for each can be found in the appendix in Algorithms 7.1, 7.2,
and 7.3, respectively. The implementations of these algorithms all utilize Kokkos parallel dis-
patch with the exception of a purposely serial Gauss Seidel. Jacobi utilizes parallel for
over the outermost loop to run over the rows of the matrix in parallel. Chebyshev utilizes
various parallel kernels to accomplish the vector additions, matrix-vector multiplications,
and the scale by diagonal. Gauss Seidel requires some modifications to run in parallel.

To utilize parallelization in the Gauss Seidel smoother, a staged Gauss Seidel was created
that allows for specific chunks of rows to be run at the same time. The user can specify the
chunks of rows via two arrays that act as a graph and map in a way similar to the CRS
format’s graph and map. There are two provided ways of splitting rows into these chunks,
which can be found in Color Helper.hpp3 and Level Helper.hpp. These methods
respectively assign colors and schedule levels to the matrix. Because Staged Gauss Seidel
aims to preserve symmetry, the forward and back sweep run the stages in reverse order of
one another. Thus if chunks are not chosen so that no row in a chunk depends on another
row in the chunk, symmetry may be lost.

5. Results. We implemented a driver program that mimics a simplified version of
the program MueLu Driver found in the Trilinos MueLu AMG library [5]. Our driver
accepts the grid dimensions for a two dimensional grid and generates the corresponding 2D-
Laplacian matrix. It then utilizes the coarse grid creation functions discussed in Section 3
to create a single coarse level for the system of equations. Finally it uses a V-cycle multigrid
implementation as a solver. The user can define which smoothers are to be used within the
V-cycle by passing compile flags found in the CMake files. The program also passes in hard
coded values to specify how many V-cycle iterations should be performed along with the
number of pre-smoothing and post-smoothing iterations, as well as how many iterations of
the smoother should be used at the coarsest level to consider the coarse system solved. In
the future these may be able to be passed in at runtime via command line arguments.

We compared runtimes of our driver with those produced by the MueLu Driver. The
tests were run and results gathered using the pbatch queue on a local cluster Shannon [8].
We used a Shannon compute node with a dual-socket 8-core Sandy Bridge Xeon E5-2670
[3]. All results were collected using 1, 2, 4, and 8 threads.

In the first set of experiments, we compare strong scalability of SGAMG to that of
MueLu. In strong scaling, the global problem size is fixed, and the number of threads is
increased. Figure 5.1 shows results for a two-level V-cycle. One pre-smoothing and post-
smoothing Chebyshev sweep is used on the fine level, and 30 Chebyshev sweeps are used
as a solver on the coarse level in practice we would use a direct solve on the coarsest level.
Figure 5.2 shows results for a two-level V-cycle. One pre-smoothing and post-smoothing
Jacobi sweep is used on the fine level, and 30 Jacobi sweeps are used as a solver on the coarse
level in practice we would use a direct solve on the coarsest level. As can be seen in Figures
5.1 and 5.2 our driver scales similarly to MueLu but is often outperformed. The SGAMG
driver outperforms the MueLu driver when the problem consists of only 10,000 rows. For

3Using Color Helper.hpp requires enabling Tpetra Experimental Kernels



292 Kokkos-Based Multigrid Solver

Fig. 5.1: SGAMG vs. MueLu V-Cycle timings across problems with 10000, 40000, and 90000
rows using Chebyshev smoothing. The V-Cycle timing for the SGAMG driver is captured
in red while MueLu is captured in blue. The dashed lines represent the ideal scaling for
each color respectively.

the 40,000 rows per thread case, however, the MueLu driver is faster than SGAMG for 1 and
2 threads. For 4 and 8 threads, the two codes have identical performance. For 90,000 rows
per thread, the MueLu driver is faster for all thread counts. To improve its performance,
SGAMG could utilize hierarchical parallelism4 within the Kokkos parallel kernels instead of
the top level only parallelism that is currently used. Specifically with Jacobi smoothing, we
note that when the work is divided to 10,000 rows per thread, SGAMG tends to outperform
MueLu, however, the opposite occurs when there are more than 10,000 rows per thread.
With Chebyshev smoothing, we note that though SGAMG never outperforms MueLu when
the work is divided to 10,000 rows per thread, it scales similarly.

In Figure 5.3 we compare weak scalability of SGAMG of that of MueLu. Weak scaling
adjusts the problem size based on the number of threads used so that the amount of work
per thread stays the same. For this experiment we adjust the problem size in each run so
that there are approximately 10,000 rows of work per thread. For both smoothing options
the SGAMG driver performs competitively with a similar growth pattern as MueLu until
eight threads are used. Ideally the time required by either driver should be flat across the
different number of threads. Instead we see the each driver’s runtime increasing with thread

4For more information please see the Kokkos Programming Guide [18]
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Fig. 5.2: SGAMG vs. MueLu V-Cycle timings across problems with 10000, 40000, and
90000 rows using Jacobi smoothing. The V-Cycle timing for the SGAMG driver is captured
in red while MueLu is captured in blue. The dashed lines represent the ideal scaling for
each color respectively.

count; at 8 threads the SGAMG driver’s runtime is larger than MueLu’s. Noting that
SGAMG behaves similarly to MueLu, we conjecture that the spike in V-cycle time could be
caused by thread initialization.

With SGAMG we had hoped to see improved performance compared to MueLu by
taking advantage of problem structure, e.g., by removing extra memory accesses. Instead
we are seeing that avoiding those memory accesses doesn’t have as much of an impact on
performance as anticipated. Further profiling of the code is necessary to pinpoint bottlenecks
in performance, but we currently suspect that conditionals to handle boundary conditions
in the matrix-vector product kernel may be partly to blame.
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Fig. 5.3: SGAMG vs. MueLu V-Cycle timings utilizing 1, 2, 4, and 8 threads with approxi-
mately 10000 rows per threadcount. The V-Cycle timing for the SGAMG driver is captured
in red while MueLu is captured in blue. The dashed lines represent the ideal scaling for
each color respectively.

6. Conclusions. The multigrid approach is an efficient way to solve many of the
PDE’s that occur in scientific computing. Since these grids have a structure, we devised a
data structure utilizing Kokkos that takes advantage of this structure to try and improve
performance in the multigrid cycle. We implemented a black box approach that takes only
the top level problem and generates a coarse representation of the problem as well. Finally
we wrote a driver program that generates the problem and its coarser counterpart and uses
a V-cycle to attempt to solve the problem.

We compared our driver to the one found in MueLu and noted that with smaller loads
per thread our V-cycle performs as desired but increasing the amount of work per thread
gives the MueLu driver the edge. Further analysis would show which parts of our V-cycle
are bottlenecks, whether it be the sparse matrix vector multiplication used for grid transfer
or the actual smoother implementations themselves. Once bottlenecks have been identified
some possible optimizations are implementing Kokkos hierarchical parallelism instead of top
level parallelism and removing the need for flag checking while iterating across rows of the
matrix stored in the SGMatrix format.

7. Future Work. There is still plenty of work to be done on this project on top of
identifying and fixing performance bottlenecks. Current builds only support single node runs
but future support for MPI [6] is ideal. Similarly, we can currently only create problems
over a two dimensional mesh with a fixed coefficient stencil. Extending support for both a
three dimensional mesh and a variable coefficient stencil are necessary to increase the scope
of problems we can solve. SGAMG is also currently restricted to one coarse level. Being
able to create and use multiple coarse levels will help improve convergence rates and allow
for larger problems to be solved quickly.

Appendix. This appendix contains pseudocode for various algorithms mentioned within
the paper. Algorithm 7.1 shows pseudocode for the Jacobi algorithm over an SGMatrix:

Algorithm 7.2 shows pseudocode for the Chebyshev algorithm over an SGMatrix:
Algorithm 7.3 shows pseudocode for a Staged Gauss Seidel algorithm over an SGMatrix:
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Algorithm 7.1 Jacobi over SGMatrix
for i = 0 to # of Matirx Rows do

sum = 0
for j = 0 to size of structure stencil do

col = A.graphij
if col >= 0 and col 6= i then

sum += xncol ∗A.valuesij
xn+1
i = (bi − sum)/A.diagonali

Algorithm 7.2 Chebyshev over SGMatrix
λmin = λmax/Ratio
d = (λmax + λmin)/2
c = (λmax + λmin)/2
r = b−Ax
for i = 0 to Iterations do

for j = 0 to # of Matrix Rows do
zj = rj/diagonalj

if i = 0 then
p = z
α = 2/d

else
β = alpha ∗ (c/2)2

α = 1/(d− beta)
p = z + βp

x = x+ αp
r = b−Ax

Algorithm 7.3 Staged Gauss Seidel over SGMatrix
for s = 0 to numStages do

begin = stageMaps
end = stageMaps+1

for i = begin to end do
row = stageIndi
sum = brow
for j = 0 to size of structure stencil do

col = A.graphij
if col ≥ 0 and col 6= i then

sum −= A.valuesij ∗ xcol
xrow = sum/diagonalrow
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DISTRIBUTED AND TASK-PARALLEL APPROACH TO LINEAR
ALGEBRA BASED GRAPH ANALYTICS USING HPX

DANIEL C. BOURGEOIS¶ AND MICHAEL M. WOLF‖

Abstract. It is challenging to obtain scalable HPC performance on real applications, especially for data
science applications with irregular memory access and computation patterns. To drive co-design efforts in
architecture, system and application design, we are developing miniapps representative of data science
workloads. This paper discusses an implementation of one such miniapp, miniTri, which makes use of both
distributed workloads and task parallelism using the parallel runtime system, HPX. One specific challenge
addressed in this paper is minimizing communication across nodes while still maintaining high levels of
asynchrony.

1. Introduction.

1.1. miniTri Data Analytics Miniapp. Application proxies or miniapps are im-
portant driving forces in the architecture-system-application co-design efforts that attempt
to ensure good performance for real applications on modern processors and supercomput-
ing systems. miniTri is a data analytics miniapp that is part of the Mantevo [4] suite of
miniapps.

As per the purpose of miniapps, miniTri is a compromise between the simplicity of kernel
benchmarks and the complexity of real applications. HPC data analytics benchmarking
applications have been represented over the years by SSCA-2 [2] and Graph 500 [6]. These
similar benchmarks emphasize graph generation and search. The miniTri miniapp is not
based on neighbor set expansion, and offers different challenges than traditional graph search
[9].

Instead, miniTri is a triangle enumeration or listing based algorithm (not triangle count-
ing). miniTri applies several operations to find an upper bound on the largest clique in the
input graph. The upper bound on the largest clique is a useful property to have as it helps
describe what dense subgraphs might look like. In the case of a distributed implementation
of miniTri, the input graph would generally be a large network. Even if the input graph
does not fit into main memory on one compute node, the calculation should still be feasible.
miniTri uses the triangle enumeration kernel within the miniapp to tabulate k-counts over
all triangles in a given graph. A k-count is defined for a triangle in a graph. Given triangle
t, let tv (te) be the number of triangles incident on vertex v (resp. edge e). tv and te are
also referred to as triangle degrees, computed by enumerating all triangles in the graph. A
k-count for a given triangle t is defined by

argmax
k
{(min

v∈t
tv ≥

(
k − 1

2

)
) ∧ (min

e∈t
te ≥ k − 2)}. (1.1)

miniTri can be formulated in terms of linear algebra, where multiplication of two ma-
trices is overloaded to enumerate triangles. This formulation is shown in Figure 1.1, where
A is the adjacency matrix of the graph, B is the incidence matrix of the graph and C is
a matrix where each non-empty element is the three vertices of a triangle. Specifically,
the multiplication is overloaded such that C(i, j) = (i, x, y) iff A(i, x) = A(i, y) = 1 and
B(x, j) = B(y, j) = 1 (by construction, B(∗, j) = 0 for other elements in this column). See
[9] for a worked out example.

¶Louisiana State University, dbour27@lsu.edu
‖Sandia National Laboratories, mmwolf@sandia.gov
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1: procedure MINITRI(A, B)
2: kCnts <- 0
3: C = A*B |> Enumerate triangles
4: triVertDegrees = C*1 |> Calculate triangle vertex degrees
5: triEdgeDegrees = C’*1 |> Calculate triangle edge degrees
6: For all {v1, v2, v3} in C(i, j) where C(i, j) != Null
7: if (v1 > v2 and v1 > v3)
8: k1 = argmaxk{min v in t st. triVertDegrees(v) >= (k-1, 2) }
9: k2 = argmaxk{min e in t st. triEdgeDegrees(e) >= k-1}
10: k = min(k1, k2)
11: kCnts(k) = kCnts(k) + 1
12: endif
13: endfor
14: end procedure

Fig. 1.1: General miniTri algorithm

The linear algebra variant of miniTri contains implementations in serial, OpenMP, MPI,
Kokkos with Qthreads and HPX with shared-memory. This paper is concerned with an
additional HPX with distributed-memory implementation.

1.2. Task Parallelism and HPX. Task parallelism is a form of parallelization that
focuses on assigning tasks across available resources, where a task can be defined as a
unit of execution that is done sequentially. Task parallelism can be contrasted with data
parallelism, which focuses on distributing data across parallel resources. By decomposing a
program into logical tasks rather than the number of processors, a task parallel program can
scale transparently based on input size and available processors without reimplementation.
Instead of placing the burden of scheduling parallel execution on the programmer, the
runtime system handles scheduling, making one implementation viable for a wider range of
computer architectures. With the recent changes in system architecture with many more
lighter-weight compute cores and extended multi-level memory hierarchies, task-parallel
programs provide a means to be portable across multiple architectures while still maintaining
a high utilization of resources.

To make the best use of task parallelism, over decomposition of parallel work must
occur. The purpose of over decomposition is to give the runtime system enough tasks to
prevent starvation of resources. In miniTri, each linear algebra kernel is over decomposed
into many light-weight tasks. For sufficiently large graphs the number of tasks is much
greater than the number of computational cores that are being targeted. Another method
that aides over decomposition in miniTri is the removal of all global barriers not intrinsic to
the computation itself. Removing global barriers can potentially expose more parallelism
than programs with lock-step synchronization.

Numerous task-based languages and runtime systems have been developed (e.g., Cilk [3],
OpenMP [7], Qthreads [8] and High Performance ParalleX (HPX) [5]. This paper focuses
on HPX, a “general purpose C++ runtime system for parallel and distributed applications
of any scale” [5]. Specifically, HPX supports fine-grained parallelism through the use of
lightweight threads as well as a global system-wide address space. One of the benefits of
using HPX as the runtime system is that task parallelism can be expressed on both shared-
memory resources and distributed-memory resources. Often, the distinction between shared-
memory resources and distributed memory resources does not need to be made. Using task



D.C. Bourgeois and M.M. Wolf 299

parallelism, if a light-weight thread is waiting for non-local data, the runtime system can
suspend that thread until the data becomes available and schedule available work. As inter-
node communication can be a large bottleneck in distributed-memory applications where
high latencies from communication are unavoidable, hiding that latency with available work
is ever more important.

1.3. HPX Task-Parallel Functionality. In this miniTri implementation, task-parallel
operations in the HPX interface are controlled through futures. Futures are “proxies for re-
sults that are not yet known” [5]. They usually represent the result of a task that will not
be available until the task is finished. The canonical function for launching a task in HPX is
hpx::async. hpx::async accepts a function and arguments to that function, launches
the function on its own lightweight thread and returns the result asynchronously inside of
a future. To launch a task without tracking the result the task, hpx::apply can be used.

Two important operations on futures are waiting for a future to be ready and getting
the value of a future. Waiting for a future suspends the thread of execution until the values
inside of the future are ready and getting a future first waits for the future to be ready and
then returns the result contained inside of the future. Waiting for a non-ready future in
HPX suspends the thread so that other computations can be done on the compute core.
As an example in HPX, querying a distributed data structure for a value yields a future
immediately. Whether or not that future is ready immediately depends on whether or not
the data is stored locally.

The task parallel runtime system must be aware of the dependencies of the computation
so that tasks can be scheduled correctly and parallelism can be exploited. In HPX, this is
done by attaching continuations to futures. A continuation is the stopping and restarting of
tasks across long-latency events. To say that a continuation is attached to a future means
that once the future is ready, another computation will occur. One such way to attach a
continuation is through hpx::future’s then function. then is passed a function that
accepts the future that then is being called on. Once the future is ready, the passed function
is called, the result of which is returned asynchronously (inside of a future) by then.

then is an example of a dataflow object. Dataflow objects are mechanisms that man-
age continuations among futures. Given a set of futures, the dataflow object “launches a
predefined function passing on the values encapsulated by the input futures” [5]. Two other
dataflow objects that this implementation takes advantage of are hpx::when each and
hpx::when any.

1.4. HPX Distributed Functionality. HPX supports task parallelism across nodes
on a cluster. In HPX terms, a node on a cluster is called a locality. Functions that can be
called across localities are called actions. An action can be invoked using the hpx::async
function which returns a future. An action can also be invoked using “fire-and-forget”
semantics with hpx::apply.

Structures and classes that are acknowledged by HPX’s global address space are called
components, and contain a global id. Components can have member functions that are
actions. To invoke an action on a component, call hpx::async with the global id of the
component. Components can also be migrated across localities or even be linked with other
components on other localities.

One component defined in HPX and used in this miniTri implementation
is the distributed data structure hpx::partitioned vector. On each locality,
partitioned vector maintains a contiguous chunk of memory. The
partitioned vector distributes an even number of elements to each locality, in a block
partitioning scheme. For multiple components to refer to the same underlying partitioned vector,
the partitioned vector must be registered. When querying values from a partitioned vector,
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the component will determine where the data is stored and if the data is not local, invoke
the corresponding action on that data structure and return a future. On the other hand, if
the value is located locally, then the future that is returned is ready.

2. Distributed Task-Based miniTri. This section describes in detail the distributed
task-based miniTri implementation using HPX. While the same linear-algebra based for-
mulation of the algorithm described in Figure 1.1 is used, a number of complications are
considered. First, global barriers between kernels should be removed. The implementation
should also take into consideration graphs that are too big to fit into main memory on one
locality. Lastly, how should decomposition of tasks occur in a distributed environment?

With regards to communicating and receiving data, the design of this distributed HPX
implementation is based off of two assumptions. First, communication across localities is
expensive. Second, requesting more data in a request is cheaper per unit of data than
requesting less data per request. While this implementation could have decomposed tasks
in a memory-hierarchy ignorant way and let HPX manage the added latencies, the amount
of added work in the form of communication from doing so would have been too great.
Instead, this implementation explicitly managed communication.

2.1. AsyncView. The miniTri implementation uses two data structures, a
sparse matrix CSRMat and a distributed vector, Vector. Both data structures contain an
underlying partitioned vector and an AsyncView. To describe the data structures,
two terms are used in this paper, partition and block. A partition is the section of a
distributed data structure on a locality. And a block refers to a section of a partition. See
Figure 2.1 for an example applied to a sparse matrix. The hpx::partitioned vector
manages communication of elements and the AsyncView manages on-node parallelism.

Matrix M

Block on M

Partition on M

Fig. 2.1: Partitioning of Matrix M

To facilitate on-node parallelism inside of distributed data structures, and to reduce the
number of nested for loops, AsyncView was created. An AsyncView attaches continua-
tions to blocks on distributed data structures. Given a start index and an end index, an
AsyncView creates n blocks, with an even number of elements on each block where n is the
number of cores that HPX finds. A subsequent implementation relaxes this restriction and
allows multiple blocks per core by specifying the number of rows belonging to each block.
Each block inside of an AsyncView contains a future. The AsyncView::for loop mem-
ber function takes as an argument a function that is called once for each element. When
AsyncView::for loop is called, a continuation to each block is attached to itself, using
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hpx::future::then member function. As an example, in Figure 2.2 the following guar-
antees are made: f1 is guaranteed to be called before f2, each block is allowed to operate
in parallel to the other blocks and any block is permitted to finish executing f2 for each of
its elements before other blocks have finished f1.

AsyncView av(0, 100);
std::vector<int> v(100);

// Given index of v, assign idx to v[idx]
auto f1 = [&](int const& idx){ v[idx] = idx; };
// Given index of v, double v[idx]
auto f2 = [&](int const& idx){ v[idx] *= 2; };
av.for_loop(f1);
av.for_loop(f2);
av.wait_all();
// v now contains 0, 2, 4, ..., 198

Fig. 2.2: AsyncView usage. f1 is guaranteed to be executed before f2 for each index from
0 through 99.

2.2. Distributed Memory Based Triangle Enumeration. After obtaining the
adjacency matrix A and the incidence matrix B, the first kernel in miniTri creates C using
the overloaded multiplication operator in the linear algebra formulation. In the distributed
HPX implementation, C, A and B are all distributed into partitions of sparse rows. Each
row contains the indexes of columns that are non-zero and the values in those row column
pairs. The computation of one row of C requires the corresponding row of A and the rows
of B corresponding to the non-zero columns of A, as shown in Figure 2.3. In this case, the
dependency on B isn’t known until the A matrix is set up.

*

row of A B

Fig. 2.3: The rows of B that are highlighted are required to calculate the row of C corre-
sponding to the row of A shown. The highlighted elements of the row of A shown are the
non-zero values of that row.

Following the assumptions on communication outlined in above, as few calls that re-
quests data from B as possible should be made. For this reason, all of the non-zero columns
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in the local partition of A are calculated. Then the data is requested from B by the appli-
cation. All of the data from locality l is lumped together and communicated in one request.
HPX then manages the request inside of a future. The rows of B requested are then stored
in a container containing one future per locality requested. This way, calculations that
don’t depend on all localities can start computation before data from all localities are re-
ceived. As each row of C is independent of the other rows of C, the calculation can proceed
in parallel. The parallelization is done by grouping each block into a task.

2.3. Triangle Vertex Degrees. In the linear algebra formulation of miniTri, calculat-
ing the triangle degrees of each vertex is a matrix-vector multiplication, triVertDegrees
= C*1 in Figure 1.1. Each element in triVertDegrees should
correspond to the number of non-zeros in the corresponding row of C. For the
1D distribution used, triVertDegrees is a Vector. A Vector wraps a
hpx::partitioned vector and a AsyncView. triVertDegrees is partitioned the
same way as C, so no communication is required.

triVertDegrees.for_loop(matmatAview,
[this, &triVertDegrees](std::size_t const& idx)

{
triVertDegrees.set_value(idx, get_row_sync(idx).nnz());

});

Fig. 2.4: Calculate triangle vertex degrees, code from the HPX distributed-memory version
of miniTri.

The actual code is shown in Figure 2.4. matmatAview is the AsyncView that is owned
by the C matrix containing the futures representing tasks of triangle enumeration on each
block of C. The Vector::for loop member function attaches the continuations from the
AsyncView passed as an argument to its own AsyncView. This is done so that each block
in triVertDegrees will be calculated only after the corresponding block in C has finished
its computation.

2.4. Triangle Edge Degrees. Similar to calculating the triangle vertex degrees, cal-
culating the triangle edge degrees is a matrix-vector multiplication, except C is transposed.
And unlike calculating triangle vertex degrees, calculating triangle edge degrees may require
communication across localities. Consider the Vector containing triangle vertex edges,
triEdgeDegrees from figure 1.1. Each element e in triEdgeDegrees, belonging to
index idx, is the number of non-zero elements in C belonging to column idx.

Creating a 1 x n matrix is on the same order of magnitude as A, B or C, which could
possibly not fit into the main memory of a single locality. The current implementation avoids
creating a 1 x n matrix. Instead, each triangle edge degree task (one for each locality) is
responsible for two subtasks. The first subtask is taking the local partition of C and reducing
that into a map from the column index to the number of non-zero indices of C for that column
and partition. Then, that map is communicated out to all localities, only sending to each
locality the part of the map required by that locality. The second subtask is to receive the
maps from all the localities and calculate its own partition of triEdgeDegrees. It should
be stressed that communication could be done in HPX without explicitly recognizing the
boundaries where the data is stored. Even though asynchrony helps to hide latencies, this
implementation takes advantage of the knowledge of data location.
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2.5. K-Counts. The last step in the algorithm is to tabulate k-counts for all triangles.
For a given triangle t, the k-count, defined in 1.1, depends on the three triangle vertex degrees
and the three edge degrees of t. Once the k-counts are tabulated on each block C for each of
the triangles (provided that the first index of the triangle is the largest, to avoid duplicate
triangles), a local reduce is performed to calculate the k-counts for that partition. Finally,
to get the final output of miniTri, a global reduce operation is performed for the k-counts
on each partition.

Figure 2.5 shows the dependencies for calculating k-counts on a block of C. Once triangle
enumeration on a block of C is complete, the vertices of the triangles on that block are
collected. Those vertices correspond to indices in triVertDegrees. To calculate the
indices in triEdgeDegrees requires a mapping from a pair of vertices to an edge. This
mapping comes from a by-product of creating the incidence matrix. Once the indices are
collected, calls to the distributed data structures triVertDegrees and triEdgeDegrees
are made so that the k-counts can be calculated. However, calls to triVertDegrees and
triEdgeDegrees may require communication, which figure 2.5 ignores. If this were the
implementation pursued, more communication would be performed than required.

triangle enumeration
on block of C

get triangle
vertex degrees

get triangle
edge degrees

tabulate k-counts 
on block of C

Fig. 2.5: Dependencies for calculating k-counts on a block of C.

To take into account communication with triVertDegrees and triEdgeDegrees,
triangle degrees can be retrieved by locality, making only one call to each locality per
partition (for each of the two Vector data structures). This is shown in figure 2.6, where
one task per locality is created to retrieve the triangle vertex degrees on that locality.
The same occurs for triangle edge degrees. Also, figure 2.6 relies on the entire partition
of C. This is so that all of the vertices and edges can be collected before making calls to
triVertDegrees and triEdgeDegrees. This was the implementation pursued.

For both figure 2.5 and figure 2.6, tabulating k-counts on each block of the partition is
permitted to run in parallel. However, figure 2.6 adds extra synchrony by waiting for the
entire partition to finish. This is done to reduce communication and stay in accordance
with the assumptions mentioned above. Note that the way that the code is structured,
calculating each block of k-counts for C does not necessarily depend on retrieving vertex
degrees from all localities. If all the required vertices are on one locality for a block, then
only the data for that locality will be waited on.
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triangle enumeration
on partition of C

tabulate k-counts 
on block of C

tabulate k-counts 
on block of C

tabulate k-counts 
on block of C

get triangle vertex
degrees on locality

get triangle edge
degrees on locality

Fig. 2.6: Dependencies for calculating k-counts on a partition of C.

3. Preliminary Results. Preliminary results for triangle enumeration and calculating
triangle degrees are shown in figure 3.1. The results are for the Oregon-1 (autonomous
system dataset) graph (11.5k vertices, 23.4k edges) obtained from the SNAP collection [1].
The implementation was compiled using gcc version 4.9.2, and the experiments were run
on NERSC’s Edison, where each node has two sockets populated with a 12-core Intel ”Ivy
Bridge” processor @2.40GHz, 24 cores per node. The Interconnect on Edison is Cray Aries
with Dragonfly topology. The code scales to 16 nodes.

A possible reason that two nodes runs slower than one node is that the added fixed cost
of communication is greater than the initial benefits of extra processing power.

1 2 4 8 16
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Fig. 3.1: Time for triangle enumeration and triangle degrees calculation on the Oregon-1
(autonomous system data) input graph [1] run on NERSC’s Edison.

4. Future Work and Conclusions. This implementation of miniTri focused on using
task parallelism in a distributed setting. While implementing miniTri, two key assumptions
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were made that shaped the design of the implementation–that communication across local-
ities is expensive and requesting more data in a request is cheaper per unit of data than
requesting less data per request. Using these assumptions, this paper focused on the in-
terplay between task-parallelism and using the knowledge of how the partition of data was
structured to explicitly control communication.

However, different assumptions could have been made that would have been more true to
task parallelism. Asynchrony was sacrificed for bulk synchronous communication in an effort
to minimize communication overhead. Namely, this implementation could have assumed
that there would always be enough asynchrony to hide the latencies of communication. In
the future, it would be interesting to implement a more asynchronous task task parallel
version, especially as it would provide a point of reference for future computer architectures
and task-parallel systems to strive for.

In addition, future implementations of miniTri should experiment with a 2-D partition-
ing distribution to overcome the difficulties of a 1-D partitioning distribution. If just a few
rows in a sparse matrix were much denser than the other rows memory could be memory
could be overwhelmed on the locality that must store those rows. A 2-D distribution could
prevent this by blocking each row into multiple localities. An added benefit of using HPX,
more partitions than localities can be created and the partitions could be sent to other
localities to ease memory demands. Another problem with the 1-D distribution is that to
calculate any triangle edge degree, the entire C matrix must finish its calculation. Besides
creating a barrier that increases synchrony, this also requires storing the entire C matrix,
which adds memory demands. A 2-D partitioning scheme could fix this as an edge could be
calculated as long as its entire column of partitions are ready.
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AUTOMATIC TUNING OF PERFORMANCE PORTABLE SPMV
KERNELS IN KOKKOS

SIMON P. GARCIA DE GONZALO∗, SIMON D. HAMMOND† , AND CHRISTIAN R. TROTT‡

Abstract. Kokkos [5, 6] is a C++ programming model that offers the ability to write portable code
that targets a wide degree of hierarchical parallelism found in current HPC systems. It works by providing
abstractions for parallel execution and data layouts that are mapped to different hardware resources. Some
parameters, such as the size of thread teams and vector width, are available for the application scientist to
tune their code to a particular hardware platform. For many applications, choosing the right parameters
is highly dependent on the data input more that the device characteristics. SPMV is a highly irregular
computational kernel that can be found in many different applications. Achieving good performance depends
heavily on the associated matrixs sparsity pattern. In this paper, we propose to extend the current set of
Kokkos tools with an autotuner that would iterate over possible candidate teams of threads and vector
width, taking advantage of runtime information to choose the optimal parameters for a particular input.
This approach would allow an iterative application that calls the same kernel multiple times to continue
to progress towards a solution while lifting the burden from the application programmer of knowing the
underlying hardware and accounting for variable inputs. We compare an approach using the autotuner
against a Fixed approach and show that the optimal choice made by the autotuner is significantly different
among three distinct architectures. After 100 iterations a subset of the matrices benefits from a substantial
performance improvement, while others are near the break-even point, where the overhead of the tool has
been completely hidden.

1. Introduction. The current high performance computing (HPC) landscape has be-
come increasingly diverse. HPC nodes now feature many distinct characteristics that can
significantly affect performance if not well utilized. These features range from type and
number processing units to widely different memory hierarchies and memory types. Within
a processing unit there exist a significant variation across vendors concerning support for
various numbers threads, numbers of vector units, vector widths, and cache hierarchies. The
introduction of accelerator-type devices such as NVIDIA’s GPUs and Intel’s Xeon-Phis [9]
has only exacerbated the differences. All of these architectural differences pose challenges
for code portability. A significant tuning effort on the part of the application programmers is
required to run on each different type of architecture, resulting in the unsustainable solution
of maintaining multiple source codes optimized for each type of hardware device.

For these reasons mechanisms to improve code portability and take advantage of the
existing highly-parallel resources and their complex shared-memory hierarchies have become
numerous. The most well-known solutions for targeting a single source code to both current
multi-core processors and accelerator devices such as GPUs are OpenMP [3], OpenACC [18],
and OpenCL [15], each with advantages and disadvantages over the others. The problem has
now become deciding which solution to use, and determining which solution will provide an
application with the greatest performance across all possible hardware devices. Furthermore,
it, it is not sustainable to apply all solutions. This variety regarding possible solutions has
made the rise of programming models such as C++AMP [7] and Kokkos [5, 6] possible.
These models seek to provide abstractions as part of the language to successfully hide the
complexity and variety in the hardware from the application programmer and at the same
time provide performance portability across the HPC landscape.

In this paper, we use Kokkos programming model to target different hardware systems.
Kokkos allows us to specify some parameters that are usually meant for tuning by the appli-
cation programmer. We develop a dynamic autotuner tool that would attempt to find the
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‡Sandia National Laboratories, crtrott@sandia.gov
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most optimal set of these parameters for a particular hardware architecture during runtime.
We test our tool using a very common and highly irregular sparce matrix vector (SPMV)
computational kernel found in many scientific areas, and we show that the autotuner picks
very distinct parameters based on the architecture and the properties of the matrix, high-
lighting the necessity for this type of runtime tool. Finally, we show that the autotuner
incurs a significant overhead and requires a variable number of iterations to improve the
performance of the computational kernel.

2. Background.

2.1. Kokkos. Kokkos programming model provides the application programmer the
means to abstract themselves out of the complexities of hardware details, and at the same
time maintain portability across hardware devices. Kokkos accomplishes these goals by
providing abstractions for the memory space, how is data allocated, and execution space,
where parallel patterns are executed. Parallel patterns in Kokkos form part of the language
and are defined as a simple set of patterns such as parallel for, reduce, and scan that can be
nested within each other to form more complex algorithms. An example of nested patterns
is illustrated in lines 19 to 32 of listing 1. Kokkos works on top of an abstract machine
model (Figure 2.1), which assumes multiple types and numbers of computing units within
a node. Each compute unit also comes with one or more memory spaces optimized for that
unit. The execution space represents a group of homogeneous units within the machine
model. These units are used to execute a parallel pattern. The programmer can then create
multiple instances of execution spaces that target different units. The process of compiling
and running computational kernels on these different spaces is abstracted completely by
Kokkos. This ability completely removes the need for hardware-specific optimizations to be
part of the main code. Kokkos can then provide further tuning through parameters passed
to the Kokkos API. We use these parameters for the autotuner proposed in this paper.
The memory spaces follow the same logic as the execution spaces. Different instances can
represent different types of memory within a node, such as DRAMs, on-package, and non-
volatile memory. For accelerators, a memory instance can be used to describe various types
of memory such as shared, texture, and global memory.

2.2. SPMV. Sparse matrix-vector multiplication, defined as y = Ax where A is a
sparse input matrix, x is a dense input vector, and y is the vector product, is a widely
used computational kernel found in many scientific applications. The performance of this
operation is of great importance for iterative linear solvers. Within these solvers, SPMV can
potentially be called up to many thousands of times until solution convergence. Due to its
importance there exist a large variety of implementations and extensive literature dedicated
to it. Unlike dense matrix-vector operations, SPMV has to deal with a broad range of
irregularity, in particular regarding the sparsity of the matrix. This asymmetry makes
it difficult to develop general-purpose, high-performance solutions. Implementations often
struggle to make successful use of caches, memory hierarchies, and available computational
resources. An extensive summary of approaches by Vuduc [17] is a good overview of this
area. Using Kokkos to write a portable high-performing SPMV kernel, we have to deal with
the same obstacles. Tuning parameters have to take into account the hardware as well as the
matrix characteristics. By making use of Kokkos runtime performance hooks, we develop
an autotuning framework that can use runtime timing information to search for the best
performing set of parameters for a particular matrix on a particular hardware device. A
skeleton implementation of SPMV using Kokkos can be seen in listing 1. The algorithm is
defined within a functor from line 19 to 32. It uses a series of nested parallel patterns in lines
19 and 22 to represent the behavior of the SPMV abstractly. This functor is instantiated in
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Fig. 2.1: Conceptual model of a high performance computing node [16]

line 5 and used as the last parameter for the parallel pattern in line 11. This pattern breaks
the problem size into groups of team threads and determines vector widths.

Listing 1: Kokkos SPMV skeleton code
1 int t eam s i ze ;
2 int ve c t o r l eng th ;
3
4 // i n s t a n t i a t e SPMV f u n c t o r
5 SPMV Functor<...> func ( . . . ) ;
6
7 // r e g i s t r a t i o n o f t h e t e a m s i z e and v e c t o r l e n g t h p a r a m e t e r s
8 Kokkos : : P r o f i l i n g : : autoTune(&team size ,& vec t o r l eng th ) ;
9

10 // The s e p a r a m e t e r s a r e u s e b y t h e Kok ko s T e amPo l i c y t o map t o h a r dw a r e
11 Kokkos : : p a r a l l e l f o r ( ”SPMV” ,
12 Kokkos : : TeamPolicy <Kokkos : : Schedule<Kokkos : : Dynamic> >
13 ( l e a gu e s i z e , team size , v e c t o r l eng th ) , func ) ;
14 // . . .
15 struct SPMV Functor {
16 // . . .
17 operator ( ) ( const team member& dev ) const
18 {
19 Kokkos : : p a r a l l e l f o r (Kokkos : : TeamThreadRange ( dev , 0 , rows per team ) , [ = ] ( . . . ) {
20 // . . .
21 // p e r f o rm v e c t o r r e d u c t i o n
22 Kokkos : : p a r a l l e l r e d u c e (Kokkos : : ThreadVectorRange ( dev , row length ) , [ = ] ( . . ) {
23 // . . .
24 lsum += . . . ;
25 } ,sum ) ;
26
27 // Add t h e r e s u l t s o n c e p e r t h r e a d
28 Kokkos : : s i n g l e (Kokkos : : PerThread ( dev ) , [&] ( ) {
29 // . . .
30 m y( iRow) = sum ;
31 } ) ;
32 } ) ;
33 }
34 // . . .
35 }

3. Autotuner. The autotuner is implemented as part of the Kokkos performance tools.
These tools work by taking advantage of the existing hooks embedded into the Kokkos
runtime. These hooks provide access to runtime information that is later reported back
to the user by the tools. Currently, they can provide parallel kernel dispatch timings and
memory usage and can generate data that 3rd party tools such as Intel’s Vtunes [12] and
Nvidia’s NSight [10] can consume to produce performance reports. All of the tools are
dynamically loaded and can be enabled by defining an environment variable. The autotuner
was developed within the same framework but with the difference that it would run as a
dynamic tool that would use the runtime information provided by the hooks as feedback to
self-improve the parameters that are usually left for the application scientists to determine.
The autotuner consists of two main components, the parameter registration interface, and
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the search space iterator.

3.1. Registration Interface. For the autotuner to be able to modify the parameters
that are fed into the existing Kokkos API, the user must first register the parameters using
the registration interface designed for the autotuner. An example of the registration interface
can be seen in line 8 of code listing 1. Registration works by keeping track of the pointers
to those variables. These variables are then internally associated with a parallel pattern
label –in this case, the parallel for label, “SPMV“ in line 11 of the same code listing. The
association happens the moment the parallel pattern is executed. What this means is that
variable registration should follow a particular order. Registration must be followed by a
parallel pattern. If, for example, multiple pairs of parameters are registered in a row, only
the last registration will be associated when the next parallel pattern is executed. Because
the registration works by the aliasing of pointers and not any data copying, it has a negligible
overhead. The registration step could be placed within an iterative algorithm that would
register the same set of parameters to the same parallel pattern every iteration without
incurring an overhead penalty.

3.2. Search Space Iterator. Once a set of parameters is registered and associated
with a particular parallel pattern label, the search space iterator (SPI) is responsible for
keeping track of the current team size and vector width. The SPI is also responsible for
iterating through all possible combinations of parameters for a specific hardware. Each
hardware platform has a different search spaces, which is directly related to the architecture
features of a device. The search space for the architectures used in this paper are illustrated
in Table 3.1. The limits for each device were determined by running a large selection of
SPMV problems with different characteristics. We then picked the highest and lowest opti-
mal parameters. Results confirm the close relationship between performance and hardware
features. For the K40 [11] team sizes don’t go below 32 due to the warp size execution being
an integral part of GPU architecture. No optimal combination of team size and vector width
will go over 1,024 due to hardware limits. Knights landing (KNL) [13] vector size won’t go
over 16 since no more vector lanes are available to use. It has two 512-bit vectors that can
handle up to eight double-precision elements each. Its team size is limited by hardware
resources. If we max out the KNL by using all 72 cores and the max four hyper threads
per core and fully use the vector lanes to execute 16 elements we get 2,304, which is slightly
above 2,048. Similarly, with the Haswell [8] architecture, the optimal choices match up with
the available hardware.

The SPI is triggered whenever the same parallel pattern label is encountered. When
executing a parallel pattern, the autotuner uses the existing Kokkos tools framework to
search through a map of all pre-existing labels. The information about each parallel pattern
instance is stored as a C++ class. This class records the kernel name, number of times
called, and total execution time. We build the SPI as part of this class. We extend the
information tracked to include data about the current and best team size and vector width.
Thus, upon finding a matching label, the autotuner will trigger the SPI by updating the
class.

We implemented the SPI using a naive approach of iterating over all possible options by
increasing the vector size by two until the maximum vector length is reached, at this point
we increase the team size by two and reset the vector length to the minimum size. The
algorithm increases the vector size and the team size by two due to hardware features such
as vector widths and number of hyper-thread being designed to be powers of two. When the
SPI is activated it will record the current set of parameters, team size and vector width used,
and the corresponding execution time. It will then check if the current execution time is
faster than the current fastest set of parameters. If so, it will update the best team size and



310 Automatic Tuning of Performance Portable SPMV Kernels in Kokkos

Architecture Max Team Size Min Team Size Max Vector Width Min Vector Width

K40m 1024 32 32 1
Knights Landing 2048 1 16 1
Haswell 8 1 8 1

Table 3.1: Search-Space bounds per architecture: The limits for each device were determined
by running a large number of SPMV problems. The resulting bounds nicely match hardware
characteristics of each device.

Fig. 3.1: Search Space Iterator (SPI) logic: Activated during the first invocation of the
kernel, it will iterate through the possible team size and vector width parameters until the
kernel is no longer called or it has finished iterating through the available options

best vector width accordingly. Finally, it will update the current set of parameters to reflect
the next set in the search space to be used when encountering this parallel pattern again.
Figure 3.1 shows the logic behind the SPI framework. When all the possibilities in the search
space have been attempted, the SPI will default to the best set of parameters and turn itself
off. This approach hinges on iterative applications that call the same computational kernels
multiple times during execution of the program, where each time the SPI will attempt a
new set of parameters. Kernels that are only executed a few times during the lifetime of
an application will not be able to take advantage of this system unless the application runs
multiple times.

3.3. NNZ Hint. In many cases, not all iterations of a search space are worth exploring
due to the characteristics of a particular matrix. If a matrix has a low number of non-zeros
per row, we could skip some of the search space iterations that we suspect won’t results in
good performance by taking that information into account. Some of the vector width choices
in the search space can be discarded if we know there are not enough non-zero elements in
a row to take advantage of all the vector lanes. Thus we can shrink the search space by
adding a check that will limit the SPI to only iterate through parameters that can meet the
above criteria. We accomplish this by adding an extra optional parameter to the autotuner
that will register the number of non-zero elements per row that will later be used by the
SPI for shrinking the iteration space. We call this extra optional parameter that represents
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Architecture Cores Logical Cores Frequency GFLOPs (double) Max. Memory Max. Memory B/W

NVIDIA Tesla K40m GPU (Kepler) 15(SMX) 2880 745 MHz 1,430 12 GB 288 GB/s

Intel Xeon Phi (Knight’s Landing) 72(Silvermont) 288 1.5 GHz 3,543
384 GB (DDR4)
16 GB (HBM)

90 GB/s (DDR4)
400 GB/s (HBM)

Haswell 32 (Xeon) 64 2.3 GHz 583 512 GB 68 GB/s

Table 4.1: Table of architectures details: No two architectures have the same value for any
of the characteristics in the table. [2][14]

the number of non-zero elements per row hint NNZ.

4. Results. In this section, we present an evaluation of the effectiveness of the auto-
tuner tool with and without the number of non-zeros per row hint. We compare it with
two other schemes: the Fixed approach, and the Oracle. The Fixed approach stands for
the conservative choice made by an application programmer that is likely going to use most
of the available resources of the hardware without taking into account the matrix charac-
teristics. We define the fixed parameters as {team size, vector width} of {1, 1} for CPU
type devices and {32, 32} for GPUs. Finally, the Oracle will always use the best setup
from the start. We evaluate these schemes using a large number of sparse matrix-vector
problems taken from the University of Florida Sparse Matrix Collection [4], which contains
a set of real-world matrices of different sizes and sparsity patterns from a wide variety of
domains. We show that for only 100 iterations the autotuner is effective in finding the most
optimal setup, incurring some overhead compared with the Fixed approach and in some
cases substantially outperforming it.

4.1. Experimental Setup. All experiments were run on a wide variety hardware.
These include a K40m GPU part of the Nvidia Kepler architecture, Intel’s new member
to the MIC series the Xeon-Phi Knights Landing, and an Intel Haswell CPU. We initially
generated results for three GPUs, a K20x, a K40m, and a K80, but we chose the results for
the K40m due to space constraints as well as the behavior of all GPUs were the same
for all matrices. The K80 did not benefit much from its dual GPU setup. Table 4.1
summarizes these architectures in more detail. For the Intel KNL we also explore some
different configurations that are possible with this architecture. We chose from a number
of different clustering styles and memory type partitions. We ran on seven different setups
that are possible from the many combinations and show results for two of the most used
configurations: Alpha and Delta. All configurations are described in Table 4.2. Finally, for
KNL and Haswell we ran with different environment variables. OMP NUM THREADS =
256, and KMP AFFINITY = compact, to control the number of threads and placement. We
chose different names/modes for how we ran the autotuner. In vanilla mode, no eviroment
variables were used. For the KNL we named the optimized modes that used the environment
variables based on the memory partition used, DDR4 or HBM. For Haswell, we use “Opt“
as the name for runs that used the variables. All results are from executing the SPMV
kernel for 100 iterations.

4.2. Experimental Results.

4.2.1. K40m. The normalized performance of the autotuner on the NVIDIA K40m
can be observed in Figure 4.1. These results are sorted based on the sparsity pattern of each
test matrix, from very sparse on the left to more dense matrices on the right. The number
of non-zero elements per row is shown in parentheses next to the each matrix name. We can
immediately notice a clear distinction based on the above description. Matrices that have
a low number of non-zero elements per row performed very poorly when using a fixed size
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KNL Configuration Name Clustering Mode Memory Mode

KNL-Alpha Quadrant Flat HBM
KNL-Bravo SNC=4 NUMA/SNC partitioned (no cache)
KNL-Charlie Quadrant 50/50 cache/HBM
KNL-Delta Quadrant 100% cache
KNL-Echo SNC=4 50/50 cache/HBM
KNL-Foxtrot SNC=4 100% cache
KNL-Golf SNC=2 Flat HBM
KNL-Hotel SNC=2 NUMA/SNC partitioned (no cache)

Table 4.2: Table of KNL configurations: Cluster mode describes the communication pattern
for a cache miss. Different clusters maintain different locality for the messages among the
KNL computing tiles. In Quadrant mode the tiles are divided into four parts. Memory
addresses served by a memory controller in the same quadrant is guaranteed to be mapped
within the quadrant. SNC or sub-NUMA cluster does the same as the Quadrant mode but
also treats the clusters as different NUMA domains. HBM stands for the high bandwidth
memory, and the cache mode stands for DDR4 memory.

for the thread teams and vector width. This performance can be explained due to there not
being enough uniform work per row take full advantage of a large degree of threads per team.
It is important to note that matrices that have this behavior like italy osm, road central,
relat9, mc2depi, and memship are vast matrices containing well over a million elements. It
is well known that large irregular data sets perform poorly on the GPU due to divergence
as shown in [1]. By forcing a large team of threads, it enforces a significant divergence
penalty. Other highly sparse but far smaller matrices like olm2000, lnsp131, lnsp511, dc1,
and fullship that only have a few thousand elements, by choosing a larger size team of
threads and vector size will not incur significant amounts of divergence penalty. Thus the
fixed choice performs almost optimally when compared to the Oracle. When we analyze
the effectiveness of the autotuner for the large matrices with a low number of non-zero
elements per row, 100 iterations are enough to make the tool worth using, as it performs
many times better than the fixed choice. The improvement from the Regular approach to
the NNZ approach varies between 73% in the best case to only about 15% in the worst case.
For small matrices with a low number of non-zeros per row, there is essentially no benefit
from the NNZ hint, and in many cases it hinders performance. The reason for this drop
in performance is due to the optimal choice for vector width being larger than the number
of non-zeros per row. Thus the NNZ approach never reaches the most optimal setup. As
an example, we look more deeply into the different configurations chosen for olm2000 and
lnsp511. For olm200 the number of non-zero per row is three. The NNZ approach maxed
the vector width to two due to a vector width of four being larger than the number of
elements per row. When we ran the Regular approach the, which searches the entire search
space, the most optimal vector width was determined to be four. A similar case is found
with lnsp511 wich has five elements per row. The most optimal vector width is eight, but
the NNZ picks a vector width of four.

When the number of elements per row increases to the teens, we see a slightly different
result. In all cases, the autotuner perform worse than the fixed choice. What this means
is that 100 iterations are not enough to amortize the overhead of the tool to at least break
even regarding performance compared to the fixed choice. The difference in performance
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Fig. 4.1: Normalized performance of the autotuner on the NVIDIA K40m

between the autotuner and the Fixed approach is about 15% to 80%, and the difference
between the fixed and the Oracle is 40% to 150%. In other words, because the difference
in performance between the tool and the Fixed approach is not too large, we expect that
it would not require a substantial increase in iterations for the autotuner to break even.
Once beyond the break-even point, because the difference between the fixed and Oracle is
significant, it would only take a few more iterations to make a noticeable improvement in
performance using the autotuner. Finally, when the matrix density increases by increasing
the number of elements per row to over 20, we see that the difference in performance
between the autotuner and the Fixed approach significantly increases, and the difference
between the Fixed approach and the Oracle shrinks substantially. What this means is that
it would require a substantial increase in iterations to break even, and after breaking even
it would take a further increase for the autotuner to make a significant difference. We plan
to use all of these observations to improve the performance of the autotuner tool further by
taking into account more properties of the matrix such as total size and the total number
of iterations in the simulation when possible.

4.2.2. KNL ALPHA. The results for the Knights Landing architecture using the
Alpha configuration are shown in Figure 4.2. These results are presented in the same fashion
as previous results. Matrices are sorted from left to right based on the number of non-zero
elements per row. Unlike the GPU results, this figure shows results for three different
execution modes. The first mode is called Vanilla which stands for no optimizations, and no
specific memory were used. The following mode is called DDR4 and stands for the specific
memory configuration specified to the KNL to be used. This mode also uses environment
variables to specify the maximum number of threads to be used and the clustering of the
threads. Finally, the last mode, HBM, is similar to the DDR4 mode with the only difference
being the type of memory specified to the KNL changed to High Bandwidth Memory. The
Fixed approached was defined to be one thread per team and a vector width of one. Lastly,
the Oracle was not calculated for this architecture.
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Large matrices with a low number of non-zero elements per row behave very similarly
to each other. The Fixed approach performs only marginally better than the autotuner.
For the Vanilla mode, the fixed setup is about 5% to 40% better than the Regular approach
and 2% to 30% better than the NNZ. For both the RDD4 and HBM this difference drops
even further. For smaller, similarly sparse matrices we see a different behavior. For all
modes, regardless of memory model or enviroment variables, the Fixed approach is always
the worst-performing setup. The difference in performance is substantial: it is almost 5X
slower for the Vanilla mode, 2X for DDR4 and 1.5X for HBM. The HBM mode is always the
better configuration for these types of matrices, but only slightly when comparing against
DDR4 memory mode. What this means regarding the autotuner is that for large matrices
with very few elements per row, 100 iterations is not enough to hide the overhead of the
tool, but because the difference in performance is subtle, it would not take much more to
break even when compared to the fixed option. For small matrices, the benefit of the tool is
evident. Among matrices with a slightly larger number of non-zero elements, between 12 to
29, we see a similar trend. The autotuner performs very well with small matrices and close
to even among large matrices, with the HBM memory mode performing slightly better than
DDR4 among all scenarios. For matrices with a substantially larger number of elements per
row, 44 and above, we see a different pattern. For all modes, the autotuner performs very
close to the Fixed approach, sometimes performing slightly better and sometimes slightly
worse. What this means for the autotuner is that it takes about 100 iterations to hide its
overhead for these type of matrices. Whenever NNZ performs slower than Regular, it is due
to the picking a suboptimal vector length that was just outside the search space. The clear
difference concerning the performance between matrices with a large number of non-zero
elements compared to the rest is the substantial speedup the HBM memory mode has over
the DDR4 mode. This performance difference ranges from about 1.5X to 3.5X. Due to not
having the Oracle results, we could not make a prediction of how many more iterations,
after breaking even, it would take for the autotuner to make a meaningful difference in
performance. We are working towards getting these results.

4.2.3. KNL Delta. The results for the Knights Landing using the Delta configuration
are show the Figure 4.3 and are presented in a similar fashion to the previous architecture
results. Matrices are sorted from left to right based on the number of non-zero elements.
The difference in results between the Delta and the Alpha is that the HBM memory mode
cannot be enabled for this configuration. Instead, the HBM memory is used as an extra level
in the cache hierarchy. Thus HBM results are not shown on Figure 4.3. Similarly to the
Alpha configuration, we see two kinds of behavior for matrices with a low number of non-
zero elements per row. The performance results for these matrices differ depending on the
size of the matrix. For large matrices, the autotuner tool performs very similarly to the fixed
option for both Vanilla, and DDR4 modes. For the non-optimized Vanilla mode, the Regular
approach performs only about 3% to 48% worse compared to the Fixed approach. Using the
NNZ hint lower that difference to zero or in the worst case to about 36%. When using the
DDR4 the autotuner performs better, matching or slightly surpassing the performance of
the Fixed approach for both Regular and NNZ or in the worst case performing only 27% to
18% lower than the fixed. What this means for the autotuner is that the break-even point,
where the overhead from the tool is completely hidden, is at about 100 iterations.

From this point, any further iterations would get a benefit in performance compared to
the Fixed. Similarly sparse but smaller matrices perform better than the Fixed approach
by a significant margin. For some matrices, the difference can be from 22% to up to 3.4X
for the Vanilla mode, and 60% to 1.5X for DDR4. For these types of matrices, the benefit of
the tool is evident for 100 iterations. A similar behavior for both large and small matrices
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Fig. 4.2: Normalized results for the Knights Landing architecture using the Alpha configu-
ration.

can be observed for matrices with a number of non-zero elements per row between twelve
to fourteen. For matrices with a larger number of elements per row the autotuner performs
very close to the performance of the Fixed approach. Both the Regular and NNZ approach
are about 10% to 48% slower than Fixed for the Vanilla mode. For the DDR4 mode, the
difference drops to nothing or in the worst case up to 30%. Similarly to the matrices with
a low number of non-zero elements per row, we can conclude that about 100 iterations
marks the break even point of the tool. Only two matrices with a large number of non-zero
elements behave differently than the rest. Coater2 and ex25 show a substantial benefit from
the autotuner.

4.2.4. Haswell. The result for Intel’s Haswell architecture are shown in figure 4.4.
The results are laid out in the same fashion as the previous results. Matrices are ordered
based on the number of the non-zero elements per row. Unlike KNL results, Haswell does
not have multiple memory configurations, but we did run using two different modes. We ran
using the standard Vanilla mode which is not using any environment variables, and we ran
what we call the “Opt“ mode which includes optimization such as the number of threads
and thread placement. Similarly to other hardware, the behavior for matrices with a low
number of non-zero elements per row can be separated between large and small matrices
sizes. Large matrices, on order of millions of elements, show compelling results for the
autotuner. The Regular Vanilla approach performed only in the worst case 28% slower than
the Fixed and in the best case about 7% better than the fixed. These results do not vary
too much when using the NNZ as a hint. The optimized results shows that the difference
in performance decreases even further for the autotuner. The Regular optimized approach
in the worst case performs 15% slower and in the best case 20% faster. Again, there is not
much difference when using the NNZ hint. These results tell us that for 100 iterations the
autotuner begins to overcome its overhead and starts to be a beneficial choice. Because
we lack the results for the Oracle, we cannot make a reasonable prediction in how fast this
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Fig. 4.3: Normilized results for the Knights Landing using the Delta configuration.

benefit would improve. On the other hand for small, sparse matrices, the autotuner always
performs slower than the Fixed approach. The NNZ hint does provide an improvement but
not substantial enough to compete with the Fixed approach. The autotuner can sometimes
be up to 100% slower than the Fixed approach and 94% slower when using the NNZ hint.
This difference also lower when running on the Optimized mode. Under the Optimized
mode, we can narrow the difference to 26% slower in the best case and at 58% at the worst.
NNZ improves this to 20% and 30% respectively. What we see from this behavior is that for
the Vanilla approach the different between the autotuner and the Fixed method is too large.
It would require a substantial increase in the numbers of iterations to pay the overhead of
the autotuner. Using the Optimized environment we see a much more manageable difference
in performance. As the number of non-zero elements increases, we don’t see much difference
between matrix sizes.

For matrices with non-zero elements per row in the range from twelve to 29, the au-
totuner perform slightly slower than the Fixed approach for both Vanilla and Optimized
mode and both Regular and NNZ approaches. For most matrices, the difference can be
only a few percent, but for cage10 and cage13 the difference can be up to 45% and 30%,
respectively. In other words, for these type of matrices, the autotuner still needs a few more
iterations to become beneficial for the overall performance. Finally, for a vast number of
non-zero elements per row (over 55) we see almost no difference between the autotuner and
the Fixed approach. The difference is single digits percentage points wich indicates that
the autotuner had broken even and had managed to hide its overhead. Running for more
iterations should provide an overall benefit compared to the Fixed approach.

4.3. Autotuner selection. To emphasize the importance of using an autotuner to
find the most optimal set of parameters we present Table 4.3. In this table, we have picked
a subset of the matrices used for out experiments, and for each matrix we show the most
optimal team size and vector width for each architecture. What we can clearly see from
the table is that each architecture had a substantially different set of optimal parameters.
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Fig. 4.4: Normilized results for Intel’s Haswell architecture.

Matrix # Of Non Zeros Per-row K40m KNL Alpha KNL Delta Haswell

Team Size Vector Width TeamSize Vector Width Team Size Vector Width Team Size Vector Width

italy osm 1 128 1 4 1 4 1 1 2
relat9 3 64 2 1 2 1 1 1 1

lnsp131 4 128 4 16 2 16 1 4 1
fullship 8 32 32 4 4 4 4 2 1
cage10 13 64 8 4 1 4 4 1 1
coater2 21 32 8 4 2 2 4 1 2
fault639 44 32 16 1 4 1 2 1 4
shipsec 55 32 16 1 2 1 2 2 2

f1 78 32 16 1 4 1 4 1 1
fluorem 140 32 32 1 1 1 4 1 1

Table 4.3: Best-performing selection by the autotuner

Even the two KNL configurations, which expectedly have the most similar set of parameters,
have the same parameters less than half the time. This difference between Alpha and Delta
configurations for the KNL is mainly due to the memory used. What this would mean is that
for the most optimal application performance, the programmer would have to re-tune his
or her application when porting it between configurations of the same architecture. When
comparing between KNL and Haswell, we see that the parameters usually decrease in size
to match the available hardware. In only three instances does Haswell uses the same set
of parameters as one of the KNL configurations. Lastly, the K40m’s optimal parameters
show in GPU’s preference for a large team size when compared to CPU type devices. We
also see that the vector width of the K40m and KNL Delta increases as the as the number
of non-zeros per row increases, showing how the autotuner adapts to matrix features. The
trend is not particularly true for KNL Alpha or Haswell as it may depend more heavily
on other matrix features. What this table means, in general, is that portability across and
within architectures has to be done by taking into account small hardware details and data
characteristics. This puts too much of a burden on application programmers and should be
automated by adaptive runtime tools.
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5. Conclusions. SPMV is a highly-irregular computational kernel that can be found
in many different scientific applications. To get good performance it is not only critical
to take into consideration details of the architecture you are running on, but it is also
highly dependent on the sparsity pattern of a particular matrix. In order to improve SPMV
performance portability across many different kinds of hardware, we proposed to extend
the current set of Kokkos tools with an autotuner that iterates over possible candidate
parameters that are fed to Kokkos parallel patterns such as teams of threads size and vector
width. The autotuner works by taking advantage of runtime information to choose the
optimal parameters for a particular input matrix. We showed that this approach allows an
iterative application to continue to progress towards a solution while lifting the burden of
the application programmer from knowing the underlying hardware as well as to account
for matrix characteristics. We compared the autotuner against a Fixed approach on three
distinct architectures and showed that after about 100 iterations the optimal choice made
by the autotuner was in many cases beneficial to the overall performance, especially when
the number of non-zero elements per row was small. In other situations, the autotuner
performed slower or very close to a Fixed approach, which signifies that the number of
iterations was not sufficient to overcome the overhead of the autotuner. We also illustrated
how the most optimal set of parameters for a particular matrix changes substantially between
architectures, and that among the same architecture different sparsity patterns required
different parameters. This highlights the need for an automated tool to lift the burden of
performance portability from the application programmers.
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TRANSITIONING GREEN-GAUSS GRADIENTS TO THE KOKKOS
FRAMEWORK

WILLIAM B. HELD∗ AND ANDREW M. BRADLEY†

Abstract. Sandia Parallel Aerodynamics and Reentry Code (SPARC) is a research code for compress-
ible CFD model and algorithm development. SPARC is currently being extended to use Kokkos [2], a C++
programming model for writing performance portable applications targeting all major HPC platforms. This
paper outlines the software narrative of updating the Green-Gauss gradient kernel in SPARC to use Kokkos.

1. Introduction. The Green-Gauss formulation is a discretized gradient calculation
that integrates around the boundary of closed control volumes. It is used in the equation
assembly phase for many Computational Fluid Dynamics (CFD) problems inside of the
Sandia Parallel Aerodynamics and Reentry Code (SPARC) [5]. Green-Gauss gradients had
previously been thread serial inside of SPARC, which, when run on the GPU, required a
series of costly data synchronizations between the CPU host and GPU device. This project
converted Green Gauss gradients into the Kokkos framework. Kokkos provides abstractions
for the parallel execution of code and for data management that enable the same code to
achieve performance on a variety of modern HPC platforms. For our purposes, Central
processing unit (CPU) and Graphics processing unit (GPU) were the primary platforms
tested upon with GPU posing most of the software development challenges.

The average directional derivative over a control volume Ω having volume Vol for a
vector u with direction vector s is

〈u〉d ≡
1

Vol

∫
Ω

s · ∇u dΩ =
1

Vol

∫
∂Ω

u s · d∂Ω, (1.1)

where the equality follows from integration by parts. In a cell-centered method, the second
integral can be discretized as

(〈u〉d)i =
1

Vol

∑
k∈Fi

ui + uk
2

(s · aik) (1.2)

for cell i, Fi the set of cells sharing a face with cell i, and aik the face area vector pointing
from cell i to cell k. If we set s to each of the Cartesian basis vectors ei, i = 1, 2, 3, we
obtain 〈ux〉i, 〈uy〉i, and 〈uz〉i, which is the cell-centered Green-Gauss gradient [5].

In the code, the calculation is performed by iterating over structured faces of a mesh and
calculating the gradients of each face. These face gradients are then summed to ultimately
form the cell gradients. The path of traversal and the gradient calculation differ slightly
depending on the various face types which reside within the mesh. Due to this, Green-Gauss
gradients can be broken down to loops for interior faces, block interfaces, and boundary faces.
Interior faces exist inside a block and affect two adjacent cells in the block. Interfaces operate
between blocks, affecting one cell in the block and one cell outside the block. Boundary faces
are affected by the boundary conditions of the mesh, but only affect one cell inside the mesh.

2. Code Structure.
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2.1. Kernel Style. SPARC is an object-oriented code. Therefore, Kokkos functions
used are designed as kernels that take only the data they need and modularly contain code
complexity. A kernel is created as a class. Inside that class are the two key functions
Compute() and Run(). Compute() defines the calculations which you are performing in
parallel and is defined as a Kokkos inline function. Run() handles the calls to the compute
function by initializing the iterator values and iterating over the faces of the mesh, which
will be hereafter referred to as a mesh traversal. A toy kernel is declared below exhibiting
a typical kernel’s structure. This toy kernel will be used throughout this paper to illustrate
patterns used in the Green-Gauss kernel.

class ToyKernel :
// This kernel is part of a family of ToyKernels.
public ToyKernelBase<ExeSpace>,
// This kernel uses the mesh traverser service class.
public MeshTraverserKernel<ToyKernel<ExeSpace>, ExeSpace>

{
private:

typedef MeshTraverserKernel<ToyKernel<ExeSpace>> MT;

KOKKOS_FORCEINLINE_FUNCTION
void compute(const int& k, const int& j, const int& i) const;

virtual void Run();
};

The Green-Gauss gradient calculation is made up of two kernels that encapsulate the
three loops described in the introduction. Interior faces and interfaces are computed in the
non-boundary condition kernel, and boundary faces are computed in the boundary condition
kernel. Interior faces and interfaces are able to be computed in the same kernel because
they use an identical Compute() function, meaning that their differences can be handled in
the Run() function. The boundary faces, on the other hand, have a different Compute()
function and therefore are implemented in a separate kernel.

2.2. Compile-time polymorphism. Inside of the Compute() of both of the Green-
Gauss Gradient kernels, there is a call to another function, which calculates the face con-
tribution. The face contribution calculation changes based on face type, so the function is
external to the kernel. The face contribution calculation had been implemented through
the use of runtime polymorphism, as is standard for object-oriented code. In C++, runtime
polymorphism is implemented using a virtual table (vtable), a table of function point-
ers mapping an object’s virtual function to the function implementation. However, when a
vtable is copied to a GPU, it is copied byte-wise. The copy then resides in a different address
space than the one in which it was constructed. Consequently, the vtable contains invalid
pointers. Although they present a challenge on GPU, object-oriented design principles, in-
cluding polymorphism, are widely used and found helpful in the design and maintenance of
large software applications. These conflicting problems are resolved by using compile-time
polymorphism, which is implemented using templates. Templates are resolved at compile
time; hence any function that is dispatched through a template is resolved without a func-
tion pointer, avoiding the vtable issue. The disadvantage of this approach is it increases
object file size and build time. We mitigate build times by using explicit template instantia-
tions. One or a few instantiations are performed in each of a large number of automatically
generated translation units. Then, we can run the build with 32 cores, for example, and
build the kernels efficiently in parallel.
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3. Non-Boundary Kernel.

3.1. Abstracting the Compute function. Although visually similar, the face gradi-
ent calculation is computationally different for I, J, and K faces. In the Green-Gauss kernel,
these differences were abstracted away by using a struct called Indexer. Indexer modifies
variables depending on the index slot given as a template parameter. In the definition be-
low of the Compute() function from the toy kernel, a simple example is shown of how the
Indexer function Add() is used.

KOKKOS_FORCEINLINE_FUNCTION
void compute(const int& k,

const int& j,
const int& i) const

{
int kp = k, jp = j, ip = i;
Indexer<>::Add(kp, jp, ip, slot, -1);
data(kp,kj,ki) = 2;

}

Depending on the value of slot, Add() subtracts one from the variable in the corresponding
index slot. This allows the compute function to set a different location inside the variable
data equal to 2. Using this method in Green-Gauss allows for the Compute() function to be
abstracted from the face index type. Due to this, the different index values can be handled
in the Run() function. This enables all of the interior face, and later interface, calculations
to take place inside a single kernel. If indexing dominates a kernel’s runtime, one can use a
version of Indexer templated on the slot.

3.2. Interior Faces. The interior face calculation was the first to be implemented, as
it is the majority of the calculation and the initial phase of the calculation. It is contained
within a loop that iterates over every block from the input mesh and sets up a sequence
of non-boundary condition kernels. In a serial implementation, each block is iterated over
three separate times for the I, J, and K faces in the block. By Eq. 1.2, each face gradient
is calculated and then summed into the gradient for the cell. However, since each face
affects both of the cells it borders, this summation causes a race condition when performed
in parallel. Atomic writes can be used to avoid race conditions. For our structured mesh,
graph coloring is very simple and is an alternative to atomic writes. Experiments in other
parts of the code showed that graph coloring is faster by 5–10% on a conventional CPU than
the fastest atomics-based implementation. Therefore, we have opted to use graph coloring
in this kernel, as well. A 2-color graph coloring is done in the direction of the iterating faces
for the I, J, and K loops. In the Run() definition of the toy kernel below, an implementation
of the 2-color graph coloring is shown for a simple 10× 10 mesh.

public:
IndexSlot slot;
// Runs through the entire mesh with 2-coloring
virtual void Run()
{
// Set the slot value for Compute()
slot = I_SLOT;
// Set the start, stride, and end for traversal
this->InitializeTraversal (0, 1, 9,

0, 1, 9,
1, 2, 8);

this->MT::Run();
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this->InitializeTraversalI(2, 2, 8);
this->MT::Run();
slot = J_SLOT;
this->InitializeTraversal (0, 1, 9,

1, 2, 8,
0, 1, 8);

this->MT::Run();
this->InitializeTraversalJ(2, 2, 8);
this->MT::Run();
slot = K_SLOT;
this->InitializeTraversal (1, 2, 8,

0, 1, 9,
0, 1, 9);

this->MT::Run();
this->InitializeTraversalK(2, 2, 8);
this->MT::Run();

}
};

Each traversal first goes across the mesh skipping every other face, later following with a
second traversal which calculates and sums gradients for the faces previously skipped. In
Green-Gauss since faces only update the same cell when they are direct neighbors, this
alternating graph coloring avoids the race condition without using atomics.

3.3. Interfaces. The interface calculation was the second step of implementation due
to its high commonality with the interior face calculation. It is contained within a loop
inside Run(), which iterates over the interface boundary conditions to provide it access to
interface type data used to create the traversal for the interfaces.

The face gradient calculation and the summation that takes place in the Compute()
phase are identical for both interior faces and interfaces. However, the way that interfaces
are iterated through is different and therefore requires a unique mesh traverser call within
the Run() function of the non-boundary condition kernel. Two values are pulled from the
interface type data: the index slot and a boolean which indicates whether the interface is a
minimum or maximum face. These values are then used to initialize a mesh traversal down
only the faces that border another block. In the interface loop, each face only affects one
cell within its own block; therefore, there is no race condition on these cells. It also updates
the cell gradient value for another cell in the block that it shares a border with, known as a
ghost cell. Ghost cell gradients also do not have a race condition. Thus, the traversal can
have a stride of 1.

3.4. Organization. The design decision was made to implement all of the loops of
both interior faces and interfaces within the Run() function of this kernel. This makes the
code simple at surface level as only a single call of Run() is written and the code complexity
is contained within the kernel itself. The code snippet below illustrates the simplicity of
this organization as it appears in the source file.

// Toy Function as it appears in .C file
void ToyFunctionForIllustration()
{

for(const auto& data : data_chunks)
{

auto toy_kernel = ToyKernelBase<>::Create(data);
toy_kernel->Run();

}
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}

4. Boundary Kernel. Faces affected by the boundary conditions have the most varied
method of calculation, since they only affect the gradient value of a single cell and the
calculation is changed by what type of boundary the face resides upon. The boundary
condition calculation is written as an entirely separate kernel, which takes an extra argument
of boundary condition data.

The traversal for boundary conditions follows the same structure as that of the in-
terfaces, initiating the iterators based on the index slot and whether or not the face is a
minimum face. However, for boundary conditions, which of the two affected cells is the
ghost cell makes a computational difference. Therefore, the boolean that defines whether
the face is a minimum or maximum face is used to define two separate calculations within
the Compute() function.

5. Calculation Wrap-Up. To finalize the calculation, each cell gradient is divided by
the volume of the cell. This calculation was placed into a simple kernel that iterates over
the entire mesh by cell and divides every cell’s gradient by its volume.

6. Performance Results. With Green-Gauss natively running on both GPU and
CPU, it is important to understand how performance is comparable on each of these ar-
chitectures. For the experiments we used Sandia’s Shiller [4] Testbed, comparing 32 core
Haswell node to a NVIDIA K80 [6] package, using 2 devices. The comparisons show the
minimum time, maximum time, and mean time utilized by the Green-Gauss calculation
as well as the mean time for each call of the function. The timings were measured us-
ing the Teuchos [1] package of Trilinos [3]. The Thermal Design Power (TDP) of a 32 core
Haswell node is 330 Watts. Comparatively, the TDP of a 2 device K80 package is 300 watts.

Architecture 32 Core Intel Xeon Haswell NVIDIA K80m Package
MinOverProcs 9.849s (100 calls) 19.02s (100 calls)
MeanOverProcs 10.08s (100 calls) 19.03s (100 calls)
MaxOverProcs 10.41s (100 calls) 19.05s (100 calls)
MeanOverCallCounts .1008s .1903s

While the K80 package performs worse than a 32 core Haswell node for Green-Gauss,
it is important to note that GPU performance is superior in the solve phase of SPARC,
meaning that for solve-dominated problems it is advantageous to use the GPU. Therefore,
it is important to kernelize the assembly phase to lose as little performance as possible in
the assembly phase of GPU runs.

7. Conclusions. As one of two second-order accurate discretizations of gradients used
in SPARC, Green-Gauss is key to the equation assembly phase of many CFD problems. By
transitioning it to the Kokkos programming model, expensive data synchronizations were
removed and SPARC’s scalability to modern HPC architectures was improved. The 3 face
types were implemented within 2 kernels to create a source code that is simple to understand
from an application programmer’s perspective. Each of these kernels were implemented
while maintaining the object-oriented code style, which had previously existed in SPARC.
The completion of this kernel constitutes a second important group of code paths in SPARC
developed entirely for GPU, contributing to SPARC’s performance portability on modern
HPC architectures.
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A GENERALIZED VECTORIZATION MECHANISM FOR VTK-M

ALOK HOTA∗ AND KENNETH MORELAND†

Abstract. We propose a general method for achieving efficient vector processing with the Visualization
Toolkit for Multi- and Manycore systems (VTK-m) framework [14]. In addition to threads, effective vector
unit utilization is imperative for high performance code running on x86-based [6] multicore and manycore
processors. This method can be fitted for the templated worklet mechanism existing in VTK-m to provide
automatic vectorization of visualization algorithms. We show that within certain conditions, this method
can result in speedups of over 2x in both arithmetic- and memory-intensive functions.

1. Introduction. Data visualization can be described as the process of efficiently
transforming raw data into an intuitive, informative, human-readable format, often in real
time. The data visualization pipeline is generally composed of three steps: data loading,
data processing (also called filtering), and rendering. Achieving high performance in loading
and rendering is primarily a hardware task, as parallel file systems with solid state cache
and cutting edge graphics chips take the brunt of the work. However efficient data filtering
is squarely a computational problem.

In response to continuously growing datasets, data filtering algorithms must be scalable
to achieve the real time performance data scientists expect. This is especially a concern for
in-situ visualization. Libraries like the Visualization Toolkit (VTK) [19], which form the
backbone for visualization packages like ParaView [1] and VisIt [3], are invaluable as they
allow for simpler development of visualization algorithms.

With the current push for exascale computing, computation on accelerators outside
of the confines of a CPU and host memory are required. For example, the Titan [16]
supercomputer at Oak Ridge National Laboratories achieves 99% of its peak theoretical
performance via its GPUs. Other examples are the upcoming machines Trinity [11] and
Cori [15]–at Los Alamos National Laboratories and the National Energy Research Scientific
Computing Center, respectively–which will contain Intel’s Haswell generation CPUs and
Knights Landing (KNL) generation Xeon Phi processors [8]. Utilization of the 72 cores
on the KNL and the thousands of streaming cores on GPUs is essential. Visualization
algorithms will require parallel code execution across different parallel programming models
in order to run on current and future machines.

The accelerator platform diversity challenge is being met with VTK-m [14], which was
created out of the group of packages used to augment and complement VTK for cross-
platform parallelism, such as PISTON [10], Dax [13], and EAVL [12]. VTK-m aims to
provide an abstracted development platform for visualization algorithms that can be run
across a breadth of multicore and manycore hardware. VTK-m’s heavily templated and
object oriented code present a challenge for automatic vectorization. In this work, we
approach a solution to a generalized mechanism to aid automatic vectorization of VTK-m
code compiled for x86-based platforms [6].

In Section 2 we describe the necessary contextual information regarding VTK-m, vec-
torization, and memory structuring. Section 3 outlines the various experiments performed
to determine a potential vectorization solution. Finally, Section 4 describes how measure-
ments were taken regarding performance gains, and details on results of the experiments
are given.

2. Background.
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2.1. VTK-m. VTK-m was designed to meet the challenge of simplifying visualization
code development for cross-platform parallelism for current and upcoming machines. For
example, VTK-m currently supports NVidia GPUs using the Thrust library [2] and threads
for multicore and manycore nodes using Intel’s TBB library [17]. VTK-m additionally
supports vectorization by way of compiler-specific preprocessor macros, which can give an
additional performance boost to serial or threaded code.

The unified, general interface for different architectures is realized with worklets. A
worklet is a serial functor operating on a small segment of the data being processed. They
can be thought of as a generalized CUDA kernel. The developer is expected to write the
functor (or use ones provided). Based on the architecture being targeted, the worklet is
transformed into the appropriate representation at compile time. For example, worklets
would be converted to kernels using Thrust if the CUDA platform were targeted.

VTK-m contains two types of worklets: field and topology. Field worklets map a func-
tion onto arrays; this is logically the same as iterating over an array and applying a function
to each value. In this case, vectorization is an obvious performance booster, as this is ex-
actly the type of computation at which vector operations excel. Topology worklets, on the
other hand, have a less straightforward computational signature, as they work on the topo-
logical connections in a dataset. This could be the points, cells, or both in a grid. Due to
the diverse nature of datasets, grids can be irregular, leading to haphazard memory access
patterns in topology worklets. In-situ visualization exacerbates this, as memory layout is
now completely out of the hands of the developer. The aim of the vectorization experiments
is to ultimately find a generalized mechanism that can vectorize both field and topology
worklets.

2.2. Vectorization. Vector instructions on CPUs are a type of Single Instruction
Multiple Data (SIMD) processing. Traditional serial computation requires the data to be
loaded into a register, a call to some operation, and the result to be offloaded from a register
to memory. Figure 2.1a shows an example of iterating over an array to increment each value
by 1. Note that there are eight loads into registers and eight additions.

This is contrasted with vectorized code, which operates using a vector unit and vector
registers. This can greatly reduce the number of arithmetic function calls at the expense
of loading the vector register. Continuing the previous example, a segment of the array
would be loaded into the register simultaneously as opposed to individually. Once loaded,
the vector unit then calls an add operation against the entire vector register. The number of
values loaded depends on the vector width and the data type of the array values. On modern
AVX2 [9] processors, the vector register width is 256 bits, which is capable of holding 8 single
precision floating point values, or 4 double precision values. Assuming single precision values
(or integers), the number of additions has reduced from eight in the serial version to just
one in the vector version for each segment of the array. Figure 2.1b shows the vectorized
version in comparison to serial.

Vectorized code can be automatically generated by the compiler given the correct condi-
tions. Function calls break automatic vectorization unless the function is inlined. Without
inlining functions, the compiler cannot read the contents of the function when determining
vectorized sections. In some cases, there may be several layers of nested inline code, or
execution paths that would stall the compiler from generating automatic vectorized code
sections. Developers can then include explicit preprocessor instructions in loops that should
be vectorized. Note that this does not guarantee vectorization, however.

Vectorization performance can be measured using a few metrics. In the previous ex-
ample, the maximum theoretical gain is 8. This is determined by the maximum number
of elements that populate the vector register, or the number of cycles that the vectorized
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Fig. 2.1: Comparison of the conceptual difference between serial (a) and vectorized opera-
tions(b). Note that for the same functionality, the serial version has eight separate load and
add operations in contrast to the single vector load and vector add operation.

version saves from the serial version. The actual gain observed may be less than the max-
imum gain; lowered efficiency can be caused by remainder loops if the array length is not
a multiple of the vector width or by data dependencies forcing fewer values to be operable
at once. Vector efficiency is calculated as actual gain divided by maximum theoretical gain.
Naturally, efficiency at or near 100% is desired.

The last main measure of vectorization performance is speedup, which can either be
measured as the ratio between processor cycles, wall time, or CPU time of the vectorized
version versus the serial version. Wall time speedup is arguably the most immediately
noticeable metric, and is strongly affected by memory access times, making efficient man-
agement of memory a critical component of vectorization. If the values to be loaded into an
array are scattered across the heap (common for point coordinates or data values), access
time will be much slower than if the values were consecutively arranged in an array on the
stack. Array accesses can invoke burst reads, in which access time will be much lower than
random access. If array segments can fit into cache–and especially if data is reused in the
operation–cache misses will be greatly reduced, further speeding up execution.

2.3. Loop Tiling. Loop tiling, or strip mining, is a common solution to memory
management to reduce access times and efficiently utilize cache memory. Explicit loop
tiling can be used to aid the compiler in vectorizing segments of code and intelligently filling
cache. At its core, loop tiling involves splitting a loop into one or more nested loops. The
inner loop then iterates over a smaller segment of the original loop bounds. Given an array of
length L elements, a simple loop to increment all elements of the array is given in Algorithm
2.1. The tiled version of this loop using a tile size of t is shown in Algorithm 2.2.

Algorithm 2.1 Serial loop to increment values of an array A of length L

for i← 0, L do
A[i]← A[i] + 1

Algorithm 2.2 Tiled loop with a tile size t to increment values of an array A of length L

for i← 0, L/t do
for j ← 0, t do

k ← i× t+ j
A[k]← A[k] + 1
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If the inner loop is given preprocessor macros for vectorization, the compiler may find it
easier to vectorize. The shorter inner loop length allows for values to be stored in cache for
faster access during the loop execution. In this specific example, introducing tiling would
most likely not affect performance strongly, or could even decrease performance. This is
because loop tiling is highly sensitive to the amount of work done inside of the inner loop,
data reuse, and stride. This example is trivial in terms of work done, which compilers
may be able to optimize automatically without explicit instruction or tiling, depending on
optimization level selected at compile time.

Loops that iterate over multiple large arrays using values from each for calculation are
good candidates for vectorization. This is especially the case if values from each array must
be accessed multiple times during the loop. A common example of this is a vector cross
product function, which is described and tested in Section 3.

The stride of the array, or the distance between successive elements, also requires careful
consideration. Ideally, elements should be packed such that values that will be accessed in
succession are at unit stride. That is, the distances between the values’ addresses are equal
to the size of the value type. Modern vector architectures (such as AVX2) can use vector
load operations to access elements that are at a non-unity but consistent stride. However, it
is still beneficial to have unity stride for code that can be vectorized easily across platforms.
Stride is especially an issue for algorithms that deal with grid coordinates, such as point-to-
cell algorithms like cell averaging, which is also described and tested in Section 3.

2.4. Array of Structures vs. Structure of Arrays. Stride is also affected by the
way values are stored. One dimensional C-style arrays of primitives afford simple access as
only an index is required. VTK-m provides cross-platform compatible types that often fall
back to primitives, such as IdComponent (int), Float32 (float), and Float64 (double).
Additionally, VTK-m provides the ArrayHandle class, which behaves like a smart pointer.
For the simple types described above, the ArrayHandle access methods resolve to a simple
pointer, which is a direct memory access.

However, storing objects becomes problematic for access and vectorization. A very
common example is a vector of 2, 3, or 4 elements, used often for point coordinates and
vector data variables. VTK-m provides a templated Vec class that allows users to create
such vector objects. When dealing with many Vec objects, it is conceptually simple to
store the objects in an array and iterate over the array for calculations. This pattern is
called Array of Structures (AoS). Though it is the most straightforward representation, this
pattern inhibits vectorization due to indirect memory access patterns to read and write
members of the objects, which leads to irregular strides. For arrays of point coordinates
or data values, the vector objects may also be non-sequentially distributed in memory, as
shown in Figure 2a. As mentioned before, this is exacerbated with in-situ visualization,
where there no control over memory layout.

The opposing design pattern is Structure of Arrays (SoA), which represents the same
information using one object that contains multiple primitive-element arrays (though the
container object is not necessary). For example, with 3D vectors, an SoA representation
would dictate having three arrays which contain the x, y, and z components, respectively. In
this representation, the original vector objects could be reformed using values at the same
index from each array. Figure 2.2a shows an example of AoS representation of some 3D
vector data using VTK-m data structures. The same data is shown in the corresponding
SoA representation in Figure 2.2b. SoA representation makes vectorization much simpler
due to the consistent unity stride and direct memory access to primitives instead of objects.

VTK-m’s worklet structure utilizes ArrayHandles to store objects, meaning it uses
AoS representation by default. Thus, the elements must be copied out of the array into
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Fig. 2.2: The difference in memory layout between AoS (a) and SoA (b) representations.
While intuitive, AoS inhibits vector loading due to indirect accesses. SoA enables much
more efficient vectorization due to unity stride and direct memory access.

SoA representation at runtime. If done properly, the overhead of copying data is greatly
outweighed by the improved vector performance. Because the data is in AoS form when a
function is called, and only a partial SoA transformation is applied in the inner tiled loop,
this pattern is sometimes referred to as a hybrid of the two, called AoSoA.

3. Tests & Implementations. Since field worklets operate over arrays, the internal
scheduler that calls the worklet functor simply uses a for loop of the appropriate length
when running on a CPU. Because of this, the initial approach to vectorization in VTK-m
was to unilaterally force vectorization on all field type worklets. Forcing vectorization in this
loop, however, did not always work; the compiler would still be unable to vectorize if the
computation was too complex to automatically convert into vector operations. Additionally,
though most function calls are inlined in VTK-m, the nesting level may just be too deep for
the compiler. When the compiler was successful, performance was often worse than without
vectorization. This was generally due to vector registers not being filled for each operation.
Without dense vector usage, the overhead of copying into the vector unit outweighs the
decreased number of operations.

3.1. Initial Tests. In order to formulate a generalized mechanism for automatic vec-
torization, the overall existing performance needed to be understood. The question being
asked was, given the existing VTK-m structure with unilateral vectorization, what types
of functions resulted in increased performance? Knowing this information gives insight on
how certain function characteristics affect vector performance.

3.1.1. Increment Worklet. The first worklet created was the original increment ex-
ample given in Section 2.2. The increment worklet simply took an array as input and
iterated over it, adding 1 to each value.

This operation was initially expected to vectorize very well. However, while vector
registers were engaged, overall performance was degraded. This is due to the low amount
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Fig. 3.1: A rendering of the dataset generated by the shells worklet. An isosurface at values
of 0 is applied to make the structure visually apparent.

of work being done, as well as the lack of data reuse. Additionally, the extensive layers of
inlined code and dependencies hinder vector register saturation. As described earlier, these
problems combine to greatly limit any possible performance gains.

3.1.2. Shell Worklet. The shell worklet created a field, or a set of values for each
point coordinate. The computation is conceptually simple, but involved more arithmetic
and lookup compared to the incrementation worklet. For each point i, the distance from
i to the center of the 3D grid was calculated. The sin of the distance was taken, and the
result was used as the final value. This results in spherical “shells” of values radiating from
the center of the grid. Figure 3.1 shows the result of applying an isosurface filter (Marching
Cubes) to the output of the worklet. The functor code is shown in Listing 1.

void operator()(const vtkm::Id &inputVertexId,
vtkm::Float32 &outputVertexValue) const

{
//calculate grid coordinates using vertex ID
const vtkm::Id i = inputVertexId % width;
const vtkm::Id j = (inputVertexId / width) % width;
const vtkm::Id k = inputVertexId / layer;
const vtkm::Float32 dist2 = (i-center)*(i-center)+

(j-center)*(j-center)+
(k-center)*(k-center);

outputVertexValue = vtkm::Sin(vtkm::Sqrt(dist2)); //output
}

Listing 1: The shell worklet functor. Here, width is a member variable of the worklet.
Note that there is low data reuse, resulting in high register pressure.

The shell field worklet did vectorize, with the vector registers being saturated at 8
values per operation. However, due to the low amount of data reuse, there is a high demand
placed on the vector register. That is, the overhead of copying into the vector register is not
adequately amortized over the number of operations being performed before the next load
operation is called. This is also known high register pressure. Armed with the knowledge
of data reuse and arithmetic density requirements gained from this and the previous test,
two new experimental worklets were created.

3.2. Vector Cross Product Worklet. Computing vector cross products is a very
common task, such as when computing surface normals and lighting. Storing the vector
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Fig. 3.2: A conceptual model of the tiled, two-layer worklet scheme. Developers can still
write a field worklet and worklet functor as expected, and can remain oblivious to the
wrapper around it that tiles the input for vectorization.

objects in an array for calculation is inherently an AoS solution. Thus this was a prime
candidate for studying and understanding how a general optimization mechanism could be
designed.

Several alternative versions were created to compare performance and guide the creation
of a vectorized worklet. The functionality of each was the same. The inputs were two arrays
of 3D vectors, either in Vec object form, or as three primitives. The output was a single
array of 3D vectors containing the cross products, such that element i of the output array
contained the cross product of the ith vectors in the input arrays.

First, a baseline worklet version was created to test as is and with the forced vector-
ization enabled. This is what developers would be expected to write. Next, a non-worklet
AoS version was created. This was functionally identical to how a worklet would work. It
allocated two arrays of Vec objects. A for loop then iterated over the arrays to compute the
cross products. Then the equivalent SoA version was created. This used six allocated arrays
for the x, y, z vector components and a for loop containing the cross product calculation.

Next, a hybrid AoSoA version was created, which introduced loop tiling. Initially, the
vectors were stored in two arrays of Vec objects (AoS). For each iteration of the outer
loop, six component arrays were allocated on the stack for a segment of the original array
(SoA). These were filled with values, and a subsequent loop performed the cross product
calculation. The results were then copied into the output array of Vec objects.

A slightly modified AoSoA version was created that introduced an extra step before
computing the cross product; instead of directly using six primitive elements to compute
the cross product, two Vec objects were created and passed to a function. There are two
notable characteristics of this version. First, there is a copy from AoS to SoA and another
copy back into AoS form, which was intended to allow the objects to contain values from
contiguous memory locations. Second, by doing this additional copy, the input vectors are
generalized into objects again, which allows the actual cross product computation to be
isolated into a function more easily.

This then led to a tiled, two-layer worklet schema, wherein calling the worklet actually
executed the outer loop, which transparently tiled the input and called the real worklet
function repeatedly on only a segment of the input data. This preserves the initial purpose
of a user-created worklet: a serial functor that operates on a small segment of the data. In
this case, the developer need only write a cross product functor that takes two Vec objects
as input and outputs another Vec object. The outer loop can then be a hidden templated
wrapper that compiles to the correct types automatically. Figure 3.2 shows a conceptual
model of the tiled, two-layer worklet scheme.

3.3. Cell Average Worklet. Cell averaging is a topology worklet: specifically, a
point-to-cell worklet. Suppose a dataset contains a data field with values located at the
points of a grid. To obtain data for the cells, the average of each cell’s point values can be
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used. The potential behavior of this operation differs greatly from that of a field worklet
like vector cross product. Point and cell data for a grid are not necessarily linearly arranged
in memory. Additionally, there is no guarantee that each cell has the same shape, meaning
that the average calculation operation may not be exactly the same between successive calls.

VTK-m comes with a cell average worklet. It takes an array of point values and a cell
set as input, and returns an array of cell values. It is designed to work on cell sets of varying
shapes (sometimes called zoo cells). The cell average value is calculated with a loop whose
bounds change based on the cell shape being operated upon. This generic implementation
is necessary to allow for cell average calculation on any incoming cell set type.

However, if we restrict the input to explicitly defined cell sets, some insight can be
gained. Explicit cell sets contain at minimum three arrays that define the grid’s structure:
cell shape, number of points for the cell, and point indices (also called connectivity). Any
cell set can be converted to an explicit cell set. By representing the cellset structure data
in arrays, the worklet can be converted to a field worklet. Now linearity can be guaranteed
for accessing the worklet’s input domain. A further restriction is to confine the allowed cell
shapes to hexahedrons, which forces each cell to have eight points. If the bound for the
loop calculating the average is not known at compile time–which is true of zoo cells due
to varying shape–then vectorization will be difficult or impossible. By restricting the cell
shapes, the viability of tiled worklets can be tested on topological operations.

The field cell average worklet iterates over the list of cells. Each iteration creates a
set of eight arrays which correspond to the eight corners of the hexahedral cell. The array
lengths are equal to the tile size. The inner loop then iterates over the tileSize point values.
Each iteration i retrieves the ith value from the arrays, which are then passed to an inner
worklet. The inner worklet simply iterates over the eight values to calculate the average.

Note that there are some issues with this structure. While it generally follows the tiled
worklet schema, it does not have the data reuse and cache bonuses of a real field worklet.
For example, after pulling eight values out to be averaged, those values are used only once
when averaging to create a sum.

4. Results. Two different methods were used to measure performance. The first was
inspection of performance, ability to vectorize, and vectorization effectiveness with Intel
Advisor [7]. Advisor allows the developer to check if the compiler was able to vectorize
the code, and to look at the generated assembly. It additionally measures time spent in
vectorized loops and estimates gain and efficiency over the serial version. Finally, it shows
details of vector register usage, and based on known patterns suggests improvements if
vector utilization and efficiency are low.

The second method was to measure the wall time of the experiments using calls to the
GNU C library [5] function gettimeofday [4], which allows for microsecond resolution.
Wall time is in some senses a much more valuable measurement compared to the loop CPU
time measured by Advisor because it reflects the time a user would wait for execution.
The wall time of a process is heavily influenced by other processes running on a machine
and I/O bandwidth. However, such influence in the measurement is desired as those same
factors will exist when a user is running an application as well. To maintain usefulness in
measurements, tests were run when as few other processes were running as possible, and
tests were run 10 times to obtain a larger sample size for accuracy.

Advisor was helpful in finding reasons vectorization was not occurring, and for providing
a proof of concept benchmark for testing. However, it was difficult to decipher how it
calculated values of gain and efficiency. For example, reports of >8x gain could have been
calculated by including memory efficiency. It was not clear, however, and the values for gain,
vector length, and efficiency were used more as a cursory performance indicator. Wall time
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Test Gain Vector Length

Worklet (not vectorized) 0.00 1 21.59

Worklet (vectorized) 0.47 2 12.15

AoS for loop 1.89 8 7.04

SoA for loop 8.10 8 5.91

AoSoA for loop 9.80 8 10.19

AoSoA for loop isolated function 6.10 8 7.45

Two layer tiled worklet 7.47 8 9.00

             Average Wall Time (sec)

Fig. 4.1: Performance comparison of the various vector cross product tests. Gain and Vector
Length are as reported by Advisor. Wall Time is as reported by gettimeofday.

reports show performance increases in a physical manner, which was much more intuitive.
These reports were trusted more than Adivsor results.

4.1. Vector Cross Product Worklet Results. All tests used two input arrays of
220 3D vectors and output one array of vectors of the same length. The baseline worklet
was tested without any vectorization attempts to obtain a baseline wall time. The same
worklet was then tested with the unilateral vectorization described in Section 3. This relied
on the compiler automatically vectorizing the scheduler loop. For the remaining tests, this
loop was preceded by an explicit pragma to prevent attempts at vectorization. This was
done to allow the tiled loops to the inner worklets to vectorize properly. Additionally, any
tiled loops used a tile size of 1024. This value was chosen as it is small enough to allow
values to fit into a single cache line on most or all modern CPUs, while still remaining large
enough to not incur a penalty for loading cache too often. Lastly, all tests were run with a
single process utilizing a single core. Full results are shown in Figure 4.1.

The baseline worklet did vectorize and resulted in an approximately 44% wall time
reduction. However the vectorization gain reported by Advisor was very low. This was
thought to be caused by the indirect memory access of AoS representation. An additional
issue was that the compiler vectorized the scheduler loop. The scheduler loop can be thought
of as the outermost loop of the worklet, which is the incorrect level to vectorize. Ideally
the innermost loop is vectorized, as it contains the simplest and lowest level instructions
that can be directly converted into vector instructions. Vectorizing the outermost loop led
to unexpected data dependencies and poor vectorization due to the number of nested loops
and functions.

The same functionality was rewritten without the VTK-m worklet infrastructure for the
AoS for loop test. This resulted in full vector register saturation, and increased performance.
This result shows that by isolating the loop (i.e. no automatic vectorization of an outer loop),
significant wall time reductions can be achieved even with AoS representation. The SoA
representation for loop was then tested. By allowing direct access to primitive elements
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Fig. 4.2: Plot of wall time for the three cell average tests. Tile sizes greater than 8 resulted
in a ≤ 1% additional speedup.

(which are reused in calculating the cross product), wall time is further decreased. An SoA
representation is essentially the perfect design for vectorization, as it isolates the loop and
allows for efficient loading from cache to vector units.

However, it is not appropriate to force all field worklets to be converted into for loops
iterating over arrays. The hybrid AoSoA loop uses the speedup granted by SoA representa-
tion, while attempting to return to a worklet-style structure. For each iteration of the outer
loop, six component arrays (three for each array of Vecs) of length 1024 were allocated,
and the vector components were copied into them. For each iteration of the inner loop,
the elements were passed to the cross product function. The memory allocation for each
iteration introduced overhead, which reduced performance in comparison to the SoA for
loop. However allocating and operating on these intermediate arrays is an easily templated
structure. By introducing the tiled, two-layer structure to worklets, one can expect a wall
time reduction over 50% like this test.

Since the cross product calculation was isolated into its own function, which mimics
the original structure of the worklet, this two layer system was transformed into a wrapper
around the worklet. Now, when the dispatcher and scheduler call the cross product worklet,
they instead call an “Outer” worklet that takes in both AoS input arrays in their entirety. It
then performs the intermediate array allocation, copying, and tiling, and calls the “Inner”
worklet for each iteration of the inner loop. This results in dramatically improved gain,
vector saturation, and efficiency over the automatically vectorized worklet. The two-layer
tiled worklet is 240% faster than the baseline worklet and 135% faster than the vectorized
worklet.

One caveat is that the vector cross product may be a special case. The mathematical
operation of cross products involves multiplying vector components and summing/differenc-
ing the products. These sub-operations can be directly translated into Fused Multiply-Add
(FMA) vector operations. Utilizing FMA reduces the number instructions even further than
originally anticipated as it handles multiplication and addition at once [18]. Operations that
do not translate to FMA instructions would still vectorize and should still see a significant
performance increase, though possibly not to the extent of vector cross products.
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4.2. Cell Average Worklet Results. The built-in cell average worklet was compared
as a baseline against two worklets restricted to explicit cell sets. The two experimental
worklets were functionally almost identical to the built in worklet. Both utilize tiling,
however the first worklet did not have two layers; it simply calculated averages inside the
loop. The second worklet did have two layers. Because the functionality of the new worklets
is so close to the original–apart from being a field worklet–the tile size was varied from 1 to
1024. A tile size of 1 would make the both new worklets logically exactly the same as the
original. Figure 4.2 shows results for the three tests.

In both cases, there is a performance increase that plateaus with tile sizes of 8 and
higher. The single layer tiled worklet reduced wall time by approximately 33% at a tile size
of just 1. This was due to it being a field worklet as opposed to a topology worklet. That
is, the ability to directly access memory linearly over an array caused a significant speedup
without using any tiling. At a tile size of 8, the single layer worklet reduced wall time by
about 69%.

The two-layer tiled worklet actually performed 21% slower than the baseline with a tile
size of 1. This was caused by the additional overhead of copying into a new array that
is then passed to the inner worklet functor. Even though the functor is inlined by the
compiler for vectorization, this additional step cost quite a bit in performance. Increasing
the tile size alleviates this, however. At a tile size of 8, the two-layer tiled worklet performed
approximately 55% faster than the baseline, albeit 44% slower than the single layer tiled
worklet.

Increasing the tile size past 8 shows negligible performance improvements of ≤ 1%. This
is thought to be caused by the averaging operation itself, which does not directly translate
into a vector operation. Past a tile size of 8 there is a “wall” of arithmetic overhead that
tiling cannot overcome.

Due to the difficulty involved, and number of restrictions required to achieve a small
performance increase, it is unlikely that the same two-layer tiled worklet scheme will cleanly
fit to topology worklets. If the restrictions placed were lifted, the high degree of variability
in zoo cell sets would make it difficult to templatize the wrapper code.

5. Conclusions. In the push for exascale computing, vectorization plays a key role for
the efficient utilization of x86 platforms and accelerators like the Xeon Phi [8]. Additionally,
because it can be applied by the compiler, it is a performance boost that can be obtained
“for free” given the correct computational structure.

Data filtering algorithms for visualization push some of the requirements for efficient
vectorization. We were able to achieve a generic wrapper mechanism that can enable easier
automatic vectorization for field worklets. The wrapper can remain invisible to the de-
veloper, who is still only required to write a serial functor operating on single elements.
Additionally, the wrapper can be templatized, as it does not make assumptions about the
input and output data types or the internal workings of the functor. Thus, VTK-m develop-
ers and applications based upon it can receive the benefit of higher performance x86-based
code. For future work, we hope to extend this generic wrapper functionality to topology
worklets, whose erratic memory accesses still present a challenge to vectorization.
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EVALUATION OF AREA OF OPTIMIZATION IN HYDRODYNAMIC
CODE WITH PERFMINER
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Abstract. As the rates by which processing speeds and architectural innovations in next-generation
computing systems begin to plateau, the need for alternative means of ensuring code speedup has become
apparent. Utilities capable of describing low-level application behavior or identifying performance-defining
trends within code bases allow developers a means by which to identify bottlenecks within their applications,
optimize for these bottlenecks, and produce applications of elevated efficiency. In this work we verify findings
established by the application performance modeling and profiling tool, MuMMI, via the statistical analysis
of event counts collected using a tool of a similar nature, PerfMiner, on a common scientific benchmarking
application, LULESH.

1. Introduction. The breakdown of Moore and Dennard scaling in recent history has
shifted significant focus away from architecting increasingly complex and compact computer
processors, effectively bringing code and architecture optimization into the spotlight of the
computing community. Physical limitations inherent within processor designs, such as min-
imum attainable transistor size or maximum allowable energy dissipation, prevent the rapid
advancement of computer processing speeds to continue consistently with the observable
trend of the past few decades. While code optimization techniques in response to specific
resource bottlenecks are already existent and prevalent, means by which to effectively and
reliably identify these bottlenecks within complex code bases can still prove to be difficult,
leaving a notable portion of optimization up to the intuition of the developer. As a product
of this, a clear need for effective application profiling and optimization tools exists within
our current age of computing.

2. MuMMI. The Multiple Metrics Modeling Infrastructure (MuMMI) [7] is an inno-
vative utility currently undergoing development at Texas A&M University that allows users
to measure, model, and predict the performance and power consumption changes made to
an application’s code based on utility-identified optimization areas. Identification of notable
areas to be optimized is done by correlating application run times against hardware event
counts through the use of a variety of statistical models. Highly-correlated events in this
instance can generally be considered to be a component of run time, and substantial op-
timization can frequently be made by optimizing the processes responsible for generating
such events [7].

MuMMI goes a step further by attempting to model application performance charac-
teristics using previously identified events of interest. By fitting a model to application
performance, adjustments to event counters can be simulated and expected speedup from
optimization determined. This process can be used to identify which component of runtime
have the potential to provide the most benefit to the user when optimized, or if optimization
steps are even worth the effort if expected speedup is insignificant.

3. PerfMiner. PerfMiner [5] is a thread-level hardware performance counter collection
utility capable of retrieving the counts of numerous hardware events over a single application
execution by means of modeling counter behavior through sample-based multiplexing. The
utility is scalable and able to evaluate hardware counts of runs conducted on a single core
upwards to many thousands of cores with no notable run time dilation. Performance metrics
are retrievable at a thread level using perf [4], a Linux performance counter profiler, or via
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the Performance Application Programming Interface (PAPI) [1]. Choice of collection tool
is dictated by user selection1.

PerfMiner’s multiplexing functionality allows the counts of numerous events to be col-
lected within a single run. Typically, a given architecture will possess a relatively small
number (4-8) of user-accessible performance counters, which can only record one event at
a time. In the past, this has led users to rerun test applications while recording differing
subsets of events in order to retrieve a representative picture of the behavior of an applica-
tion. This process proves to be problematic when, for example, event lists of considerable
length are desired, and single run execution times are of a significant duration. In many
conventional cases, collection of such data could take upwards of weeks. However, PerfMiner
remedies this problem by modeling the behavior of event counters as it multiplexes through
an event list, effectively allowing for the collection of nearly all events present on an archi-
tecture with minimal error over the course of a single run. This is an appealing feature, as
MuMMI utilizes an event list consisting of thirty-two unique PAPI events when profiling an
application, and the time required to execute collection runs of an application at various
configurations to validate just the 32 counters associated with MuMMI’s findings would
have proven to be a time-intensive endeavor.

4. LULESH. The Livermore Unstructured Lagrange Explicit Shock Hydrodynamics
mini-application (LULESH) is one of five challenge problems posed by Defense Advanced
Research Projects Agency’s (DARPA) Ubiquitous High Performance Computing program
(UHPC), a multi-million dollar initiative aimed at stimulating the development of promising
exa-scale architectures. Even though an execution of LULESH analytically solves a relatively
basic Sedov blast problem, and can therefore be considered a simple application, LULESH
is regarded as representative of the typical algorithms and data flow that exists within more
expansive scientific applications. In this, LULESH proves to be useful for benchmarking
purposes as well as for testing optimization toolkits [2].

Since the inception of DARPA’s initiative, LULESH has become a widely-studied proxy
in the development of future architectures as well as seen use in the area of evaluating
HPC application optimization techniques. Representative of larger hydrodynamic codes
but packaged as a mini-app, LULESH is capable of being quickly integrated into differing
architectures for use as an optimization test case [3]. This ease-of-integration allows for
resource-intensive application runs to be quickly conducted on diverse architectures, which
can then be evaluated by various optimization applications. Knowledgeable optimization of
the original hydrodynamic code can be made from the findings of these evaluative applica-
tions. LULESH’s scalable run time footprint allows for unoptimized and optimized runs to
be tested and compared at shorter execution times during preliminary testing, which can
then be scaled to more significant test sizes once notable optimizable areas are identified.
This expedited means by which optimization changes can be evaluated makes LULESH an
appealing test case for the evaluation of performance monitoring and optimization software.

5. Shepard. As one of the multiple advanced architecture test beds housed at Sandia
National Laboratories, Shepard exists as a thirty-six node architecture testbed featuring
two Intel Xeon E5-2698 v3 processors per node and intended for use in the exploration of
pre-exascale systems as a part of the National Nuclear Security Administrations (NNSA)
Advanced Simulation and Computing (ASC) project. For the purpose of this evaluation,
previous LULESH optimization findings gathered from Shepard using MuMMI will be ver-
ified with PerfMiner runs on the same architecture. This adherence to a single testbed is

1PAPI event descriptions can be found at https://icl.cs.utk.edu/projects/papi/wiki/PAPIC:PAPI presets.3, while perf event
descriptions can be found at http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32- architectures-
software-developer-manual-325462.pdf
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established in order to enforce consistent application environment conditions between the
differing experiment runs, and to minimize architecture-induced variations in experiment
results.

6. Methodology of Evaluation. MuMMI in part identifies areas of optimization
within a given code by correlating the run times of a set of executions with the hardware
counters of predetermined events during those runs. Event counters that are highly corre-
lated to an application’s execution times are hypothesized to be substantial components of,
or potentially responsible for, the overall execution time of the application, and therefore
rewriting the application’s code to minimize the counts of these highly-correlated counters
could lead to improved run times. By evaluating a set of runs of single-node configurations
in this way, one might use this method for identifying areas of optimization that will improve
the run time of a a configuration that is specified for single-node executions. By evaluat-
ing a set of runs from various node configurations, like those used in scaling studies, one
might be able to identify areas of optimization that could potentially improve the scaling
or distributed performance of the application.

Previous MuMMI experiments conducted on Shepard that evaluated thirty-two PAPI
counters identified five events of particular interest: PAPI TLB IM, PAPI L3 TCM,
PAPI L1 DCM, PAPI CA CLN, and PAPI BR TKN [6]. While PerfMiner possesses the
capability of recording PAPI events, to record the same set of events using PerfMiner would
essentially clone the previous experiment. Perf events were recorded instead as a means of
approaching these findings from a different method.

Table 6.1: PAPI-to-Perf Conversion Table

PAPI Event Perf Equivalent
PAPI TOT CYC CPU CLK THREAD UNHALTED:THREAD P
PAPI TOT INS INST RETIRED:ANY P
PAPI L1 TCM L1D:REPLACEMENT
PAPI L2 TCM LLC REFERENCES
PAPI L3 TCM LLC MISSES
PAPI CA SHR OFFCORE REQUESTS:ALL DATA RD
PAPI L2 LDM L2 RQSTS:DEMAND DATA RD MISS
PAPI L2 STM L2 RQSTS:DEMAND RFO MISS
PAPI BR CN BR INST RETIRED:CONDITIONAL

PAPI BR TKN
BR INST RETIRED:CONDITIONAL,
BR INST RETIRED:NOT TAKEN

PAPI CA CLN OFFCORE REQUESTS:DEMAND RFO
PAPI CA ITV OFFCORE RESPONSE 0:SNP FWD
PAPI BR NTK BR INST RETIRED:NOT TAKEN
PAPI BR MSP BR MISP RETIRED:CONDITIONAL
PAPI RES STL RESOURCE STALLS:ANY
PAPI L2 TCA L2 RQSTS:ALL DEMAND REFERENCES
PAPI L1 LDM L2 TRANS:DEMAND DATA RD
PAPI L1 STM L2 TRANS:L1D WB
PAPI L2 TCW L2 TRANS:RFO
PAPI L2 DCA L2 RQSTS:ALL DEMAND REFERENCES
PAPI L2 DCR L2 RQSTS:ALL DEMAND DATA RD
PAPI L2 DCW L2 TRANS:RFO
PAPI L1 ICM L2 RQSTS:ALL CODE RD
PAPI BR INS BR INST RETIRED:ALL BRANCHES
PAPI L1 DCM L1D:REPLACEMENT
PAPI L2 ICA L2 RQSTS:ALL CODE RD

PAPI TLB DM
DTLB LOAD MISSES:MISS CAUSES A WALK,
DTLB STORE MISSES:MISS CAUSES A WALK

PAPI TLB IM ITLB MISSES:MISS CAUSES A WALK

PAPI L2 DCM
LLC REFERENCES,
L2 RQSTS:CODE RD MISS

PAPI L2 ICM L2 RQSTS:CODE RD MISS
PAPI LD INS MEM UOPS RETIRED:ALL LOADS
PAPI SR INS MEM UOPS RETIRED:ALL STORES

The use of perf-native events allows for the holistic evaluation of the code, similarly to
MuMMI’s intent, does not mandate a need for direct source code manipulation, and only
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requires the construction of a list of events to be recorded. The conversion of the thirty-
two PAPI events used by MuMMI to perf natives acceptable by PerfMiner is outlined in
Table 6.1. Over the course of this evaluation, a perf event that is directly equivalent to
PAPI L3 TCM could not be readily identified, and will therefore not be regarded in this
study. In addition to these events, approximately 120 additional events were recorded by
PerfMiner and processed in this evaluation as a means of potentially identifying additional
highly correlated events.

As a means of identifying performance counters of interest, 152 events recorded across
21 uniquely-configured scaling runs were correlated against the execution times of the runs
they were collected from. The Spearman’s rank correlation was chosen for this evaluation as
the coefficient output descriptive of a dataset’s fit to a monotonic relationship, or how con-
sistently a dependent variable increases or decreases as an independent variable increases.
More specifically, this coefficient, referred to as rho, is a nonparametric measure of rank
correlation, or the statistical dependence between two variables of interest. A correlation’s
p-value is the liklihood of the data existing and producing the observed rho value, assuming
that the null hypothesis of the correlation is true, that there is no monotonic relationship.
For this statistical model, observed p-values of less that 0.05 are generally regarded as sta-
tistically significant. This choice in correlation model is in opposition to the use of a Pearson
correlation, which outputs a coefficient that is descriptive of a dataset’s fit to a linear model.
While linear resource-time relationships are desirable findings in scaling studies, in practice
these relationships do not tend to exist in unoptimized distributed codes. Additionally,
Spearman correlations are regarded as less susceptible to distortion from outliers than Pear-
son correlations, resulting in a relationship description that is more representative of an
application’s behavior. Examples of weak and strong Spearman correlations identified in
this evaluation are given in Figures 6.1 and 6.2.

Fig. 6.1: Example of a weak Spearman correlation (no consistent monotonic relationship.)
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Fig. 6.2: Example of a stronger Spearman correlation (increasing trend, observable mono-
tonic relationship.)

By representing each event counter output as a ratio of that count to the total number
of execution cycles in the run from which it was collected, one can normalize the data set in
a manner that reduces the impact of counter variation. While the counter values and total
cycles may vary to a minor degree from run to run, the ratio of these counters to cycles
tends to stay consistent, under the assumption that as cycles increase, the behavior of the
program stays consistent. By evaluating the ratio of these events as opposed to their raw
counter values, stronger correlations can be seen in the data and a more representative image
of the scaling behavior of the application can be observed. Figures 6.3 and 6.4 illustrate a
representative transformation that occurs when one of the counters in this evaluation’s data
set is normalized.
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Fig. 6.3: A distribution of scaling values prior to normalization.

Fig. 6.4: A distribution of scaling values after normalization.

7. Evaluation. The top ten events highly correlated to run time in this evaluation
and their corresponding rho and p-values are given in Table 7.1. From this data, one could
conclude that the execution time of this application is primarily dominated by time spent
in node/CPU synchronization, evident by highly correlated lock2, stall3, and recovery4

cycle event counters, that could potentially have been caused by high instances of branch

2Lock cycles: (lock cycles.cache lock duration), cycles stalled while L1D was locked.
3Stall cycles: (ild stall.lcp), cycles where the decoder is stalled on an instruction with a length changing prefix.
4Recovery cycles: The number of cycles spent waiting for a recovery after an event such as a memory nuke or misprediction.
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misprediction. A situation such as this could be indicative of a poorly distributed task load
within the application, or a task load that does not distribute well with scaling.

Table 7.1: Top Results of Spearman Correlation of 152 Events

Perf Event Rho P-Value
br misp retired.all branches 0.8077922078 9.50261493034E-006
lock cycles.cache lock duration 0.7948051948 1.67476895284E-005
offcore requests.all data rd 0.7883116883 2.19089193045E-005
offcore requests.demand data rd 0.7857142857 0.000024332
ild stall.iq full 0.7844155844 2.56285823777E-005
int misc.recovery cycles 0.7831168831 2.6984919006E-005
offcore requests.demand rfo 0.7831168831 2.6984919006E-005
offcore response.pf l2 data rd.llc hit.any response 0.7779220779 3.3054555589E-005
idq.all mite cycles any uops 0.7753246753 3.6511080075E-005
icache.hit 0.774025974 3.83540889513E-005

Table 7.2 lists the correlation values of the events of interest previously identified by
MuMMI based on event counts from their corresponding perf equivalent. A Spearman corre-
lation of these events show a moderate correlation between the event and the run time of the
application for events PAPI TLB IM, PAPI L1 DCM, PAPI CA CLN, and PAPI BR TKN,
with small associated p-values. This would imply that while these associations are not ex-
ceptionally strong, the associations may be non-incidental and can be regarded as legitimate
areas to consider for optimization.

Table 7.2: PAPI Events of Interest, as Indicated by MuMMI

PAPI Event Rho P-Value
PAPI TLB IM 0.5636363636 0.0077925004
PAPI L1 DCM 0.725974026 0.0001948689
PAPI CA CLN 0.7831168831 2.6984919006E-005
PAPI BR TKN 0.6584415584 0.0011733517

It is important to state that the highest correlating events found by collection with
PerfMiner are not recorded by MuMMI in typical runs. By recording more events than the
thirty-two PAPI presets used by MuMMI, events featuring greater correlation to run time
were found in addition to those identified by MuMMI. In this, PerfMiner’s findings expand
on these previous findings and demonstrate the benefit of more substantial event lists.

8. Conclusions. Analysis discussed within this evaluation identifies and verifies those
areas of optimizable interest that were previously found by the MuMMI tool. In addition
to these areas of interest, additional areas were identified from a more substantial collection
list used by PerfMiner. As code optimization techniques in response to specific resource
bottlenecks such as those identified in this evaluation are already existent and prevalent,
optimization of these performance hampering areas is possible. Justification of the utility
that evaluative applications such as MuMMI and PerfMiner possess come from the ease-of-
identification possible with these applications.
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TRILINOS IMPROVEMENTS: IFPACK2 BLOCK RELAXATION
PERFORMANCE AND YAML PARAMETER LISTS

BRIAN M. KELLEY¶, MARK F. HOEMMEN‖, AND CHRIS M. SIEFERT∗∗

Abstract. Block relaxation is a preconditioning algorithm that is effective for finite element analysis
problems with natural clusters of vertices [11]. Block relaxation excels in ice sheet simulation problems,
because ice sheet meshes tend to be more dense vertically than horizontally [15]. The PISCEES project
[14] performs large scale ice sheet simulations using Albany codes [13], which rely on Trilinos [1] for linear
solvers and preconditioners.

This paper describes the process of refactoring and optimizing the block relaxation implementation in
the Ifpack2 package [11] of Trilinos. Ifpack2 block relaxation is now up to 6.94 times faster than before.
This improvement will benefit PISCEES.

Additionally, this paper discusses the addition of the YAML language [8] as an alternative to XML [9]
for Trilinos parameter lists [6]. Parameter lists are used for all runtime configuration of Trilinos packages.
YAML can express the same parameter lists as XML, but in a much cleaner and simpler format. This will
save time for Trilinos users.

1. Introduction. Block relaxation is a preconditioning algorithm that groups tightly-
coupled clusters of vertices into “blocks”. It sweeps over blocks in either block Jacobi or
block Gauss-Seidel fashion, solving each block’s linear system individually. Ideally, vertices
are strongly coupled with the other vertices in their blocks, and weakly coupled with vertices
outside their blocks [12] [11].

The PISCEES project (Predicting Ice Sheet Climate & Evolution at Extreme Scales)
[14] uses Albany [13] and Trilinos [1] codes to perform simulations of the ice sheets of
Antarctica and Greenland. The goal of the project is to accurately predict sea level rise in
the 21st century from the melting of land ice [14].

3D ice sheet meshes tend to be sparse in the horizontal directions but dense in the
vertical direction. Algebraic multigrid (AMG) preconditioners [16] are used because they
are efficient and scalable, but in anisotropic problems they suffer from bad convergence rates
[15]. To resolve this problem, AMG uses block relaxation as an internal line smoother.

Block relaxation employs a “line partitioner” to construct blocks such that the vertices
in each block approximately follow a straight line [11]. Because vertices are densely packed
in the vertical direction, the line partitioner selects vertical groups of vertices as blocks.

Block relaxation’s implementation in Ifpack2 [11], while numerically correct, was much
slower than the equivalent implementation in the older ML package [5]. ML is used as
a performance benchmark throughout the paper. Ifpack2’s block relaxation was copied
naively from the Ifpack package and was never revisited for profiling and optimization. It
was suspected that the main performance issue was bad cache performance, since each block
matrix was allocated separately. Profiling the code in Intel VTune [2] revealed that most
of the running time was spent managing reference counted pointers and memory allocation.
This paper describes the process of refactoring Ifpack2’s block relaxation to mitigate these
sources of overhead and facilitate future improvements.

Another Trilinos enhancement presented in this paper is ParameterList support for
the YAML language [8]. The ParameterList class in the Teuchos package is used as a
common format to express input parameters for all Trilinos packages and many libraries
that depend on Trilinos, such as Albany and Drekar [10]. ParameterLists are either
populated directly in C++ or read from XML files [6]. Unfortunately, XML files require

¶Texas A&M University, kelb150@tamu.edu
‖Sandia National Laboratories, mhoemme@sandia.gov
∗∗Sandia National Laboratories, csiefer@sandia.gov
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lots of boilerplate syntax. YAML is a data serialization language that can express the same
hierarchical dictionaries as XML with a much cleaner syntax. This will save time for Trilinos
users and developers.

Support for reading ParameterLists from YAML and for automatically converting
XML files to YAML is now available in the Teuchos package [6] alongside the original XML
utilities, so that Trilinos users can use it in real-world problems.

2. Block Relaxation Container Refactoring. The initial goal of the Ifpack2 block
relaxation improvements was to refactor the Container classes to facilitate future per-
formance improvements. There are 4 subclasses of Container, each with a differ-
ent underlying matrix representation for the block (vertex cluster): TriDiContainer,
BandedContainer, SparseContainer and DenseContainer. The first refactoring
task was to modify these classes so that a single instance held all the block matrices, instead
of having one Container per block. Also, the implementations of Jacobi, Gauss-Seidel
and SGS (symmetric Gauss-Seidel) [12] were moved from the BlockRelaxation class to
Container.

During this round of refactoring, the memory layout of the block matrices was made
more cache-friendly. Previously, each block was allocated separately. Instead, Container
now allocates a single scalar buffer large enough to hold all block matrices. This means that
iterating over blocks is now a predictable and sequential memory access pattern.

Figure 2.1 diagrams the memory layout changes: BlockRelaxation owns one
Container instead of several, multiple separately allocated matrix objects are grouped
into one contiguous array, and all matrix scalars are grouped into one array.

Fig. 2.1: Container memory layout: before and after refactoring

It is not possible to give the SparseContainer the same memory layout improve-
ments, because it uses the advanced Tpetra::CrsMatrix class as the underlying matrix
type. This is acceptable because the sparse container is only used for problems with very
large blocks, where per-block overhead is not a major concern.

After the Container refactoring, profiling tools were used to find the slow sections of
block relaxation. A new unit test was created in Ifpack2 to run a controlled test of perfor-
mance. In this test BlockRelaxation::apply is called with a 50,000 vertex problem.
Each block contains between 4 and 50 vertices, and the blocks are nonoverlapping. Five
sweeps of Gauss-Seidel are performed in each trial. The TriDi container was arbitrarily
chosen for performance testing because earlier tests showed that there was no significant
performance difference among the container types. Ideally, the LAPACK dgttrs call (solve
with tridiagonal matrix and LU factorization) [4] in each Container::apply dominates
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the running time. In reality, the test program spent most of its time in the internals of
Kokkos::SharedAllocationRecord (used by Kokkos::View [3] when making shal-
low copies). Memory allocation was the next offender, followed by the std::string
constructor. Figure 2.2 shows the Intel VTune results.

Fig. 2.2: Profiling of BlockRelaxation after first refactor (200 trials in 17.1 seconds)

3. Replacing Tpetra::MultiVector with Kokkos::View. The next step in the
project was to investigate why block relaxation was spending the majority of its time in-
side Kokkos::View internals. All of Container’s computations were performed with
Tpetra::MultiVector objects. The MultiVector uses Kokkos::Views to handle
the layout and allocation of their memory. Since MultiVector does not allow direct in-
dexing of its data, block relaxation created temporary nonowning, local views of the data.
Normally, getting a view from a MultiVector is a fairly cheap operation, but block relax-
ation used it in the inner loops of its Jacobi, Gauss-Seidel and SGS functions. Every time
a view is requested, the Kokkos::View inside the MultiVector is forced to update its
reference counts, check that it is available from host memory, and mark itself as modified.
These functions contributed a huge amount of overhead when run millions of times.

In order to mitigate this source of overhead, the underlying Kokkos::View is now
used directly in the computations, because Kokkos::View allows direct element indexing.
Rather than pass a MultiVector to the computational methods, the Kokkos::View is
extracted and synchronized to the host memory space only once. This is necessary when run-
ning on heterogeneous machines, i.e. GPUs or Xeon Phi. Then, all computations are done
with that View. The internals of Container and the four Container subclasses were
modified to use Kokkos::View in both the iterative methods and the apply functions.

An added benefit of using Kokkos::View is that it is no longer necessary to cre-
ate a Tpetra::Map for each block. Previously, these Maps were used to create lo-
cal MultiVector objects in Container::apply. The distributed capabilities of the
MultiVector were never needed by block relaxation, because blocks are always local to a
single processor (a convention used in Ifpack2).

With the overhead of Tpetra::MultiVector and Map eliminated, the largest sources
of overhead are gone. Profiling the code confirms that DoGaussSeidel and LAPACK’s
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Time per Apply (sec) Speedup Factor
Block Size New Ifpack2 Old Ifpack2 ML Old/New New/ML

4 0.004197 0.029137 0.000414 6.94 10.1
5 0.003606 0.023142 0.000457 6.42 7.89
8 0.002660 0.014971 0.000572 5.63 4.65
10 0.002419 0.011906 0.000665 4.92 3.64
20 0.001806 0.006542 0.001088 3.62 1.66
50 0.001498 0.003326 0.002553 2.22 0.59

Table 3.1: Performance data after refactoring BlockRelaxation. Old/New is the speedup
factor obtained from refactoring, and New/ML is the speedup factor of ML compared to
the refactored (new) Ifpack2.

dgttrs are now dominating the running time (see Figure 3.1). 1500 trials are completed
in 24.1 seconds (note that the results in Figure 2.2 are for only 200 trials). The first row is
DoGaussSeidel.

Fig. 3.1: Profiling of BlockRelaxation using Kokkos::View for computations (1500
trials in 24.1 seconds). The 1st row is DoGaussSeidel, and the 3rd row is
CrsMatrix::getLocalRowView.

The elimination of MultiVector in the Container computations caused a 6.94x
improvement in running time for the test with 12,500 blocks of 4 rows each (relative to the
old Ifpack2). However, in the same problem, ML is still 10.1x faster. Table 3.1 contains all
data from the final performance test. Time per apply call is given for the newly refactored
Ifpack2, Ifpack2 before the refactoring, and ML. As block size increases, both new and old
Ifpack2 speed up because per-block overhead is very high. ML drops below the new Ifpack2
with large blocks because its custom solver implementation is slower than LAPACK. Figure
3.2 is a plot of these figures. The table also contains the speedup factor comparing new vs.
old Ifpack2, and new Ifpack2 vs. ML.
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Fig. 3.2: BlockRelaxation performance test with computations using Kokkos::View

4. Future Block Relaxation Work. The final Intel VTune results for block relax-
ation suggest that overhead is still very high compared to ML. Input matrix access, memory
allocations, and Kokkos::SharedAllocationRecord functions are still collectively tak-
ing around twice as long as the GaussSeidel and LAPACK solve put together.

In the future, thread-level parallelism will be added to Container::DoJacobi. Non-
overlapping Jacobi is simple to parallelize because the block-vector products can be copied
into the solution vector independently.

5. YAML Parameter Lists. The XML Teuchos::ParameterList format is
heavily used by all Trilinos packages and many Trilinos users. XML is widely understood
and capable of expressing all the data types needed for input decks. However, XML’s verbose
syntax makes it difficult for humans to read and write. The YAML serialization language [8]
provides a more user friendly alternative to XML. YAML has a simple and intuitive syntax.
The motivation for YAML parameter list support in Trilinos was to save the time of both
users and developers when reading and writing input decks.

yaml-cpp [7] is the third-party C++ library for reading and writing YAML files.
It reads files into a tree structure. Copying the data and structure from the tree to a
Teuchos::ParameterList is simple and fast. Some unit tests were created that read
in equivalent XML and YAML parameter lists and verify that their contents are the same.
Here is one pair of files (XML followed by equivalent YAML):
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<ParameterList name="MueLu">

<Parameter name="coarse: max size" type="int" value="1000"/>

<Parameter name="multigrid algorithm" type="string" value="unsmoothed"/>

<Parameter name="smoother: type" type="string" value="RELAXATION"/>

<ParameterList name="smoother: params">

<Parameter name="relaxation: type" type="string" value="Jacobi"/>

<Parameter name="relaxation: sweeps" type="int" value="5"/>

<Parameter name="relaxation: damping factor" type="double" value="0.9"/>

</ParameterList>

<Parameter name="aggregation: type" type="string" value="uncoupled"/>

<Parameter name="aggregation: drop tol" type="double" value="1e-7"/>

<Parameter name="aggregation: export visualization data" type="bool" value="true"/>

</ParameterList>

%YAML 1.1

---

Muelu:

"coarse: max size": 1000

"multigrid algorithm": unsmoothed

"smoother: type": RELAXATION

"smoother: params":

"relaxation: type": Jacobi

"relaxation: sweeps": 5

"relaxation: damping factor": 0.9

"aggregation: type": uncoupled

"aggregation: drop tol": 1e-7

"aggregation: export visualization data": true

...

The improvement in readability is obvious. The same information is being expressed
more efficiently: the XML file is 755 characters, and the YAML file is only 352 characters
(a 53% reduction in size). YAML focuses on presenting the information in the simplest
possible way, with minimal syntactic overhead.

The main benefit of YAML is type inference. In XML, the type must be explicit for
every parameter. For example:
<!-- In an xml parameter list...-->
<!-- myString is a string-->
<Parameter name="myString" type="string" value="true"/>
<!-- myBool is a bool-->
<Parameter name="myBool" type="bool" value="true"/>

In YAML, type is never explicit. Every value is stored as a string. The YAML parameter
list reader determines type by attempting conversion to int, double and bool, and using the
most specific conversion that suceeds. For example, “5” can be parsed as an int or a double,
but since the int values are a subset of the double values, the value is interpreted as an int.
“5.0” is interpreted as a double.

While type inference is convenient in most situations, it sometimes leads to undesired
behavior. For example, any string value that could be interpreted as a boolean (i.e. “true”)
is assumed to be a boolean, and there is no way to explicitly mark the value as a string. Even
though the YAML spec includes the “!!str” tag to mark a scalar as a string [8], yaml-cpp
does not retain this information. In XML it is possible to have a string of value “true”. For
example:
# In a yaml parameter list
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# myString is a string with value "true"
myString: ˜true
# a bool
myBool1: true
# also a bool, even with !!str
myBool2: !!str true

Some parameter lists in Drekar contain strings with value “true”, so a workaround in
the YAML reader is necessary. The solution is to prefix the string with ˜. The ˜is removed
and everything after it becomes a string value. This prefix also works for strings that could
be converted to int or double. Note that this is a feature of the YAML parameter list reader,
and is not part of the YAML specification [8] or the yaml-cpp library [7].

6. Conclusions & Outlook. Ifpack2’s implementation of the block relaxation pre-
conditioner suffered from very high overhead. This paper outlined the process of identifying
and eliminating the sources of overhead, and plans for future performance improvements.
Currently the BlockRelaxation::apply operation is 6.94 times faster than before for
problems with many small blocks. However, there is more work to be done. Ifpack2 is
still 10.1 times slower than ML for the same small block problems. In the future, overhead
will be further reduced, and thread-level parallelism will be implemented. After more work
Ifpack2’s block relaxation will likely be faster than ML. This will greatly benefit the PIS-
CEES project because block relaxation is an excellent preconditioner for ice sheet simulation
problems.

ParameterList support for the YAML language provides a user-friendly alternative
to XML. A familiar C++ interface and automated conversion from XML to YAML make it
easy for Trilinos users to migrate their input decks to YAML if they choose. This feature is
currently available in the Teuchos package.
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A C++ EQUATION PARSER FOR
NEXT-GENERATION COMPUTING PLATFORMS

JORGE A. PEREZ∗ AND DAVID J. LITTLEWOOD†

Abstract. This paper discusses the construction of a light-weight, user-friendly, and fast recursive
descent Equation Parser for use in simulations on high performance computing platforms. This paper also
discusses a method of directly compiling user-defined expressions into C++ code and loading it into an
application during runtime through use of dynamic linking.

1. Introduction. An Equation Parser translates a string of text describing an equation
into an entity that can be used to evaluate the equation for a given set of inputs. For the
recursive descent Equation Parsers discussed in this paper, an evaluation tree was used. Each
object in the tree is responsible for computing a subsection of the equation; evaluation of
the entire equation is done through recursive calls down the evaluation tree on progressively
smaller sections of the equation.

An Equation Parser is similar to a compiler, and in some contexts they can be considered
synonymous. The term compiler is generally used to refer to a program which converts code
into a list of machine instructions, while an Equation Parser is often more limited in scope:
it deals only with mathematical equations. The Equation Parsers discussed in this paper are
better thought of as interpreters than as compilers, although one made use of the systems
compiler and dynamic linking to perform actual compilation of expressions.

Equation parsing forms the core of graphing calculators, spread-sheet software, software
to produce graphs and charts, and of symbolic equation solvers. Compilers for all major
programming languages parse mathematical expressions in the process of producing the
compilation.

Simulation software provides users with the ability to enter equations to control features
of the simulation such as the boundary conditions and other simulated behavior; in order
for this to be possible, an Equation Parser must be used to convert the textually entered
equation into something that can be used for calculation.

There are three stages to equation parsing, as described in this paper:
1. Parsing: The plain-text equation is parsed into a computable expression object.
2. Optimization: If at all possible, the computable expression object created in the

first stage is modified to speed up evaluation.
3. Evaluation: Through use of the computable expression obbject, the equation is

evaluated as many times as necessary, for a range of inputs.

2. Equation Parsing Methodology. Work on Equation Parsers focused mainly on
strategies for equation parsing involving recursive descent, with an additional investigation
into direct compilation of mathematical expressions during runtime. The most advanced
of the Equation Parsers built allowed for the definition of functions, even non-primitive
recursive functions; however, this paper focuses on a slightly more basic but better developed
Equation Parser designed for use in conjunction with simulations. Both the recursive descent
strategy and the direct compilation strategy were implemented in C++ using a standard
GNU Compiler.

2.1. Implementation. The Equation Parser is implemented in three parts. An
“EquationContext” object, which keeps track of variables and manages memory; the

∗Albuquerque Academy, Antonio@PerezExcelsior.com
†Sandia National Laboratories, djlittl@sandia.gov
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“ParseEquation” function, which is a member function of the EquationContext that con-
structs the evaluation tree; and the evaluation tree. Parsing takes place as a series of
recursive calls to the ParseEquation function on a series of gradually smaller subsections
of the equation, each a valid equation in itself. These sections are delimited by parenthe-
sis, mathematical operators, and function calls. Recursion halts when the ParseEquation
function is called on a constant or variable. Constants are parsed into 64 bit floating point
values using the C++ standard library, and variables are parsed using a lookup table stored
in the EquationContext object.

2.1.1. Computable Expression Objects. The Equation Parser receives an equation
input as a string of text, and outputs an evaluation tree that can be used to evaluate the
equation. Within the context of this paper, the term “computable expression object” refers
to a node within an evaluation tree. Conceptually, a computable expression object represents
an individual element of a mathematical expression. Each computable expression object is
either a constant, a variable, or an operation or function applied to one or more inputs. These
inputs themselves may be either constants, variables, or computable expression objects in
and of themselves (hence the tree structure). Numeric literals and numbers such as π or e
are constants; any piece of text registered in the ExpressionContext object’s lookup table is
a variable.

Computable expression objects store variables as a pointer to a location in memory
from which they can retrieve the value of the variable during the course of evaluation. The
lookup table maintained by an ExpressionContext object is a one-to-one map between the
name of a variable and a pointer to the location in memory where the value of that variable
is stored. Variables are registered with the EquationContext objects AddVariable function.
An example usage is shown in Fig. 2.1.

For user convenience, a structure called BoundaryConditionFunctor is provided. When
initialized with a string, a BoundaryConditionFunctor object will create and store the nec-
essary EquationContext object, register the variables x, y, z, and t, and call on the Equa-
tionContext object to parse the string and produce the computable expression object:

//To parse the equation, just create a new boundary condition functor:
BoundaryConditionFunctor func("xˆ2 + yˆ2 + zˆ2 + tˆ2");

//To evaluate the equation, call the functor as though it were a
function:

//(Evaluates the equation with x=1.3, y=4.2, z=2.7, and t=2.7)
double output = func(1.3, 4.2, 2.7, 2.9);

//You can change the equation as so. It will parse the new one
automatically.

func = "sin(t)*sqrt(x*x+y*y+z*z)";

2.2. Conversion of an equation into an evaluation tree. The tree is constructed
through recursive descent parsing, described above, with a worst-case running time for
parsing of O(n2), with n being the number of characters. The space requirement is O(n),
however, and evaluation of the expression also occurs in O(n). Naturally, equations con-
taining more computationally expensive functions such as sine and cosine take longer to
evaluate. The Equation Parser trees expressions first by lower-precedence operators such as
addition, and then by higher-precedence operators such as multiplication and power. Prece-
dence for operators is arranged in the following order, from lowest precedence (parsed first)
to highest precedence:
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struct BoundaryConditionFunctor {
double x = 0, y = 0, z = 0, t = 0;
EquationContext* context;
//The computable expression object
RealValuedExpression* expression = 0;
std::string equation;
BoundaryConditionFunctor() : context(0) {}//Sets context to nil
BoundaryConditionFunctor(const std::string& equation)
{

if(equation == "")
{

//Acts as default constructor if given an empty string
context = 0;
return;

}
try
{

context = new EquationContext();
//Usage: context->AddVarible(name, reference);
context->AddVarible("x", x);//Passes a reference to x
context->AddVarible("y", y);//Passes a reference to y
context->AddVarible("z", z);//Passes a reference to z
context->AddVarible("t", t);//Passes a reference to t
//Creates the computable expression object
expression = context->ParseEquation(equation);
//Optimizes the computable expression object
expression = expression->optimize(context->mem);
this->equation = equation;//Stores a copy of the equation

}
catch(std::invalid_argument arg)
{

//Occurs if the equation couldn’t be parsed
if(context) delete context;
context = 0;
throw arg;

}
}
//...
//Not Shown: Code for Copy Constructor, Copy Assignment Constructor
//...

//Overload of parenthesis operator so that the object acts as a functor
inline double operator()(double x, double y, double z, double t)
{

this->x = x;
this->y = y;
this->z = z;
this->t = t;
return *expression;//Evaluates the computable expression object

}
};

Fig. 2.1: A section of the code for the BoundaryConditionFunctor structure
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1. Ternary operator (parsed left to right)
2. Mod operator (parsed right to left)
3. Addition (parsed right to left)
4. Subtraction (parsed right to left)
5. Multiplication (parsed right to left)
6. Division (parsed right to left)
7. Power (parsed left to right)
8. Negation (parsed left to right)
9. Function arguments and statements in parenthesis

Figs. 2.2, 2.3 and 2.4 show the structure of trees generated when parsing equations using
the rules described above, with each cell representing a node. Before optimization, trees
generated from parsing equations contain one node for every operation or function, and one
leaf for every constant or variable. Prior to optimization, leaves are stored as a computable
expression object wrapped around the variable or constant, although after optimization
leaves are stored directly as a constant or variable. Further, any section of a tree whose
leaves are all constant is evaluated during the course of optimization, and replaced with
a constant. Nodes are always computable expression objects. Again, variables are stored
internally as a pointer to the location in memory with the actual value of the variable. This
is because the value of a variable is expected to change between different evaluations of
the expression, and the expression may use a variable multiple times, so it is simplest to
have different instances of the same variable all point to the same place in memory. All
computable expression objects inherit from the same abstract base class, called a Unit, with
the following methods:

1. An abstract method to compute the value of the expression stored by the Unit
2. A virtual method to attempt optimization. This method either returns a pointer

to a new optimized Unit, or it returns a pointer to the same Unit. By default, this
method just returns a pointer to the Unit from which it was called.

3. A virtual destructor (necessary to avoid memory leaks). The EquationContext
object keeps a record of all computable expression objects created during the course
of parsing and optimization, and deletes all of them when its own destructor is
called.

2.3. Evaluation. To compute the value of an expression that has already been parsed,
the value of each of the variables is set, and then the root node of the evaluation tree is
evaluated. The root node of the tree will recursively call its child nodes to evaluate, all
the way down to the leaves, which will simply return whatever value they store (in the
case of a constant) or reference (in the case of a variable). Given a tree with n nodes,
this evaluation takes approximately O(n), with a larger constant factor for more expensive
operations such as division or trigonometric functions, and a smaller constant factor for less
expensive operations such as addition or subtraction. The structure of the tree does not
(theoretically) affect evaluation time.

These nodes, each a computable expression object, contain a virtual “evaluate” function,
which will calculate and return the value of the expression as a floating-point value.

2.4. Runtime compilation of an expression into machine code. This strategy
uses a compiler already present on the system to compile an equation entered as text directly
into machine code. Direct compilation during runtime is possible because a mathematical
expression can be compiled into a shared object file, which is then dynamically linked to
the main program during runtime. Calculating the output of an equation with this strategy
is more computationally efficient than any strategy involving anything akin to evaluation
trees.
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x1*x2 + y1*y2 + z1*z2 - t1*t2

x1*x2 + y1*y2 z1*z2 - t1*t2

x1 * x2 y1 * y2 z1 * z2 t1 * t2

x1 x2 y1 y2 z1 z2 t1 t2

Fig. 2.2: Tree generated from parsing the equation for the Lorentzian Inner Product for two
vectors, x1x2 + y1y2 + z1z2 − t1t2. Constants and variables are bold; the operation that
splits each node is red. Addition has lower precedence than subtraction, so at each level the
right-most addition sign is parsed first.

                                  C0+C1*x+C2*y+C3*z + C4*t

                     C0+C1*x+C2*y + C3*z C4 * z 

      C0+C1*x + C2*y C3 * z C4 z

C0 + C1*x        C2 * y C3 z

C0 C1 * x C2 y

C1 x

Fig. 2.3: Tree generated from parsing the equation C0 +C1x+C2y+C3z+C4t. Constants
and variables are bold; the operation that splits each node is red. Addition has lower
precedence than multiplication, so at each level the right-most addition sign is parsed first.

t <= 0 ?     1.1^1.1^1.1^1.1^t*2*sqrt(x*x+y*y+z*z)         : cos(-y+3*x*x)+sin(y)  

t <= 0 1.1^1.1^1.1^1.1^t*2   *    sqrt(x*x+y*y+z*z)    cos(-y+3*x*x)+sin(y)

t 0 1.1^1.1^1.1^1.1^t  * 2 sqrt(x*x+y*y+z*z) cos(-y+3*x*x) sin(y)

1.1^1.1^1.1^1.1^t   2      x*x+y*y+z*z -y+3*x*x      y

1.1 1.1^1.1^1.1^t   x*x+y*y z*z -y    3*x*x 

1.1 1.1^1.1^t  x*x y*y z z y 3*x x

1.1 1.1^t  x x y y 3 x

1.1 t

Fig. 2.4: Tree generated from parsing the equation seen below. Constants and variables are
bold; the operation that splits each node is red. The ternary operator has lower precedence
than addition, and so is parsed first.

f(x, y, z, t) =

{
1.11.11.11.1

t

2
√
x2 + y2 + z2, if t ≥ 0

cos(−y + 3x2) + sin(y), otherwise

An expression is converted into code for a C or C++ function, written to an empty
code file, compiled into a shared object file using a standard system compiler (such as the
gcc compiler), and then dynamically loaded into the program as a full-fledged function.
The expression only has to be compiled once, as multiple nodes can load the function from
the same shared object file, and provided the function is without side-effects, its thread-
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safe. Because the shared object file containing the function is dynamically linked into the
simulation, neither is it necessary to re-start the application.

A potential downside of this approach is its reliance on an external compiler. If the
compiler available on the system differs from the one originally used to compile the simu-
lation, there is a risk that the main simulation will be unable to dynamically link to the
shared object file containing the newly-complied function.

Shown below is an example usage of the implementation:

// To compile an equation, just call CompileEquation
// with the equation and the names of the variables
double(*f)(double, double, double, double) =

CompileEquation("x*x + y*y + z*z + t*t", "x", "y", "z", "t");

//Can be called like any other function pointer
double output = f(3, 4.2, 5, 7);

//Compiles logistic function
//All standard library math functions are allowed
double(*logistic)(double) =

CompileEquation("1 / (1 + exp(-x))", "x");

//Compiling a named function is easy too:
//Compiles recursive fibonacci function
double(*fib)(double) =

CompileFunction("fib", "n < 2 ? n : fib(n-1) + fib(n-2)", "n");

//Prints fibonacci sequence for 0 to 10
for(int i=0; i <= 10; i++)
{

printf("fib(%i) = %g\n", i, fib(i));
}

3. Application of Expression Parsing to Computational Simulation. Equation
Parsers are an important component of simulations and other software that require a method
of evaluating mathematical and programmatic expressions not known at compile time.

For example, if a user needs to define a boundary condition for a simulation, it is im-
practical, and in the case of proprietary closed-source code impossible, to recompile the
simulation with the newly specified boundary condition. If the simulator contains an Equa-
tion Parser, the user can enter the boundary condition as a mathematical equation. During
runtime, the Equation Parser will convert the equation into a function-like object the simula-
tion code can use to calculate the boundary condition. Due to resource and time limitations,
simulation codes must be reusable in a variety of situations, and on multiple HPC archi-
tectures. Use of equation parsing and related methods allows the creation of highly flexible
codes that can easily be adapted to new problems and situations. This flexibility saves time,
money, human resources, and it allows for greater specialization of labor: a person need only
learn how to properly input new boundary conditions and other mathematical rules defining
the behavior of the situation in order to apply a simulation code to their problem.

C++ is a language of choice for large programming projects: it provides a combination
of speed and versatility, of both higher and lower-level programming features. As research
efforts and work move onto a new generation of high-performance computing machines
with heterogeneous architecture, there are concerns that current Equation Parsers may not
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perform well on the new systems. To be sure, the issue is not with the performance of the
parser, but of the rate at which it can be evaluated with different inputs once parsed.

3.1. Application to the MiniMultiscale Code. As part of the MiniMultiscale
project, a new Equation Parser was built that allows users to define the boundary con-
ditions of simulations as an equation or set of equations. The purpose of MiniMultiscale
is to demonstrate the capabilities of DARMA [1], a software package for dynamically load-
balancing simulations. In general, however, simulations with non-static boundary conditions
will need to compute those boundary conditions at every, or most, time-steps in the sim-
ulation. When the boundary conditions are location-dependent, i.e. they vary from one
location to another, it is necessary to compute them many millions or billions of times; once
for each element of the simulation that interacts with the boundary of the simulation. So it
is important that the computation of the boundary conditions is as fast and as efficient as
possible.

If the boundary conditions are known at a simulation’s compile-time, they can be di-
rectly incorporated into the code without issue. In MiniMultiscale, the equation defining a
boundary condition is read from a text file at run-time, and cannot be directly incorporated
into the original simulation code as that would necessitate that MiniMultiscale reads its
own source code files, modifies them, recompiles them, and then restarts itself. Doing that
would be time-consuming, it would be difficult to make modifications to MiniMultiscale,
and it would expose the source code to users. Were the sourcecode proprietary information,
or should it take hours to compile, this would be untenable.

A common application of an Equation Parser in a computational simulation is for the
specification of initial conditions and boundary conditions. The application of initial veloci-
ties to a solid mechanics simulation of an elastic-plastic ring is illustrated in Fig 3.1. In this
case, an initial outward radial velocity is applied to the entire domain using the expressions:

vx = 1.0e5 ∗ cos(atan2(y, x))
vy = 1.0e5 ∗ sin(atan2(y, x))
vz = 0.0

The resulting velocity of a point at the surface of the ring over the course of the simulation
is given in Figure 3.1B. The ring initially expands outward, experiencing permanent plastic
deformation. After the initial outward expansion is complete, the ring oscillates elastically.
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A Finite element model of a ring.
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B Surface velocity resulting from the application of an initial out-
ward radial velocity to an elastic-plastic ring.

Fig. 3.1: Application of an Equation Parser to a solid mechanics simulation for the specifi-
cation of initial conditions.

4. Conclusions. Equation parsing is a necessary component of many simulation codes.
Depending on it is usage in the simulation, evaluation of user-defined expressions can make
up a significant fraction of the total computing power expended over the course of running a
simulation. It is extremely important therefore that we have Equation Parsers that provide
a means of evaluating equations in a computationally-efficient manner. In addition, the
corresponding software implementation must be amiable to emerging hardware platforms,
e.g. those containing GPUs. If stability can be ensured, dynamic linking of compiled
expressions is ideally suited to satisfy this need, however for the time being, strategies based
on computable expression objects should suit our needs. For future projects, we recommend
a combined approach, in which a program attempts to use dynamic linking as its primary
method, but has the capacity to fall back on computable expression objects should dynamic
linking fail.
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Kokkos Task-DAG Thread-Team Collectives on GPUs and CPUs

JAMES D. STEVENS∗ AND H. CARTER EDWARDS†

Abstract. A directed acyclic graph of tasks (task DAG), or dependence-imposed topological ordering
of algorithm sub-tasks, arises in many application domains. This kind of execution pattern is a valuable
capability in any parallel programming model. For some applications, the tasks may be large enough to
warrant parallel execution within individual tasks on some architectures. We present enhancements to the
task-DAG functionality in the Kokkos programming system. Kokkos provides an architecture-independent
C++ programming model enabling within-node parallelism on diverse high performance computing archi-
tectures, currently implemented with OpenMP, Pthreads, and CUDA back ends. Kokkos provides task-DAG
execution with both intra- and inter-task parallelism, with each task executed by either a single thread or a
team of threads. We enhance Kokkos’ OpenMP and CUDA back end for task-DAG execution capabilities
with fast thread-team collective operations, including parallel reduce and parallel scan.

1. Introduction.

1.1. Kokkos. Kokkos [3, 2], an intra-node (shared memory) parallel programming
model and C++ library implementation, enables applications written in C++ to be per-
formance portable across next-generation high performance computing (HPC) node archi-
tectures including multicore CPU, Intel Xeon Phi, and NVIDIA GPU. When used with
C++11 lambda expressions, applications can implement intra-node parallel algorithms with
the same degree of ease as using OpenMP [1] or OpenACC, and subsequent optimization of
non-trivial algorithms is easier [4]. The foundation of Kokkos’ programming model is the
integrated, polymorphic mapping of parallel and data patterns to HPC node architecture
through architecture-specialized back ends. This mapping is transparently inserted in appli-
cation code through C++ template metaprogramming techniques, as opposed to language
extensions or source-to-source translators.

Kokkos was initially released at github.com/kokkos in March 2015 with mappings
for data parallel patterns (parallel for, parallel reduce, and parallel scan) and multidimen-
sional arrays. Parameters of these mappings included parallel patterns and array dimensions
that define a “skeleton” for computations and data structures, execution and memory spaces
that identify where computations should be run and where data should be allocated, and
execution policy and array layout that specify how computation should be scheduled and
how array data should be laid out. The key to data parallel performance portability is
the integrated mapping of parallel computations and multidimensional array data struc-
tures such that computations have architecture-appropriate memory access patterns; e.g.,
caching on CPU and coalescing on GPU.

A major portion of a typical application’s intra-node parallel algorithms can be ex-
pressed in terms of data parallel patterns, especially when augmented with atomic opera-
tions or coloring scheme to scalably manage race conditions. These patterns fail to address
the algorithms that conform to the parallel task-DAG pattern; i.e., whose “skeleton” is a
heterogeneous collection of potentially parallel computations that have a directed acyclic
graph (DAG) of dependencies. For example, Cholesky matrix factorization can be imple-
mented as a collection of block submatrix operations (tasks).

Kokkos’ parallel task-DAG pattern was developed over several years through a Sandia
laboratory directed research and development (LDRD) project. Portability and performance
for GPU architectures with their large number of very simple cores and “bare bones” runtime
was a major challenge and unique focus of this research and development. This challenge
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was exacerbated by the goal to enable a task running on a GPU to create a new task with
inter-task dependences that can subsequently run on the GPU without communicating with
the host CPU or its memory. This functionality is required for performance of algorithms
with a dynamic task DAG.

An additional unique feature of Kokkos’ parallel task DAG is that a task may have
internal data parallelism. This capability is implemented by running a task on a team of
“hardware threads.” These task-thread-teams are comprised of those threads that share
their entire memory subsystem; e.g., hyperthreads of a single CPU core or lanes of a GPU
warp. Tasks with sufficient computational intensity utilize their thread team to extract
additional algorithmic parallelism and additional speedup of the computation.

1.2. CUDA. An brief overview of the aspects of thread execution on CUDA-enabled
GPUs most relevant to this paper is provided here. For more detail on CUDA, see [5].

Nvidia GPUs contain hundreds of individual streaming multiprocessors. CUDA threads
are grouped into collections called blocks, with each block of threads running on a single
multiprocessor. Within each block, threads are executed in batches of 32 threads called
warps. Threads within a warp all execute the same operation simultaneously in lock-step.

The maximum number of blocks that can run concurrently on a single multiprocessor is
limited, so blocks with too few warps may under-utilize the GPU, yielding poor performance.
The block size that yields best performance depends on the application and the hardware,
but block sizes between 128 and 256 threads are common choices for good performance.

Kokkos task thread teams were initially implemented on GPUs as CUDA thread blocks.
However, the task DAGs generated for many problems, including the Cholesky factorization
mentioned earlier, contain tasks that do not require enough parallel work to be efficiently
completed by 128 GPU threads. Thus, for the reasons listed above, this can lead to less-
than-ideal performance. This is the primary motivation for allowing task teams that are
warp-sized or smaller.

1.3. Overview. In this paper, we discuss the implementation of thread-team collective
operations for Kokkos. First we describe CUDA shuffle operations and how we use them
to implement efficient warp-level team reductions and scans for GPU execution. Then we
describe our implementation of the same team collective operations for multi-core CPU
execution with OpenMP, as well as serial CPU execution.

2. Task Team Collectives.

2.1. GPU Task Team Collectives. We make extensive use of CUDA shuffle opera-
tions in implementing team collectives for warp-sized Kokkos task teams. Shuffle operations,
available in CUDA versions 3.X and later, allow threads to access data held in registers by
other threads within the same warp. They provide an often faster alternative to shared
memory usage when threads within a warp need to share data, and reduce the amount of
CUDA block-shared memory required by an algorithm. During a shuffle operation, threads
have direct access to the registers “owned” by other threads participating in the shuffle
operation. For more details about CUDA shuffle operations, see [5]. Figure 2.1 illustrates
the kinds of shuffle operations we use in our warp-level collectives.

Kokkos task team members may each contain their own internal vector parallelism. For
warp-sized GPU task teams, this leads to warps of threads that represent fewer than 32
team members, with the vector parallelism expressed across threads within the warp. For
example, a warp of 32 threads might have 4 team members with 8 threads each. These
are implemented with the threadIdx.y variable representing the member’s id within the
team, and the threadIdx.x variable representing the vector lane within each member, as
shown in Figure 2.2.
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A shfl up(value, delta=3, width=8) B shfl down(value, delta=3, width=8)

C shfl(value, source=2, width=8)

Fig. 2.1: CUDA shuffle operations allow data movement (red arrows) between threads within
a warp. In each example there is one thread per data element, but threads gain access to
other threads’ data via a shuffle operation.

Fig. 2.2: Viewing a CUDA warp as team of four “thread” members, each of which has eight
vector lanes

We want to be able to perform collective operations both across the vector lanes within
a team member and across corresponding vector lanes between team members. We will refer
to these as intra-member collectives and inter-member collectives, respectively. Figure 2.3
provides a graphical depiction of intra- and inter- member collectives.

To enable an inter-member collective within a warp containing m members, each with
v vector lanes (i.e. m × v == warp size == 32), we use shuffle operations to perform v
simultaneous stride-v collectives, each on m elements. Similarly, to enable an intra-member
collective, we use shuffle operations to perform m simultaneous stride-1 collectives, each on
v elements. Algorithms 2.1 and 2.2 display inter-member scan and reduction algorithms,
and Algorithms 2.3 and 2.4 display intra-member scan and reduction algorithms. The user
may specify the reduction join() operator, or use the default (addition). When the range
of indices on which the team is to perform the collective operation is larger than the team
size, the team iterates over the indices, one team-sized chunk at a time. This aspect of the
algorithm is not shown.

According to current documentation, CUDA only provides shuffle operations for 32-bit
data types. Multiple shuffle calls can be used to shuffle larger data types, with each call
sending one 32-bit section of the larger piece of data. Kokkos already has built-in shuffle
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A Inter-member collectives B Intra-member collectives

Fig. 2.3: Two kinds of task team collective operations

functions that use this method to shuffle larger data types, so we use these functions in our
implementation of the algorithms described.

Algorithm 2.1 Inter-member scan (CUDA)
Exclusive scan on val for each vector lane (called by each thread)

function InterMemberScan(val)
stride← blockDim.x . Stride == vector length
team size← blockDim.y
member id← threadIdx.y
temp← 0
offset← stride
while offset < WARPSIZE do . First do inclusive scan

temp← shfl up(val, offset, WARPSIZE)
if member id× stride ≥ offset then

val← val + temp
offset← offset× 2

val← shfl up(val, stride, WARPSIZE) . Make scan exclusive
if member id == 0 then

val← 0
return val

Algorithm 2.2 Inter-member reduction (CUDA)
Reduce val to member 0 for each vector lane (called by each thread)

function InterMemberReduction(join(), val)
stride← blockDim.x . Stride == vector length
team size← blockDim.y
lane delta← team size× stride/2
while lane delta ≥ stride do

temp← shfl down(val, lane delta, team size× stride)
val← join(val, temp)
lane delta← lane delta/2

return val . val only defined for member 0
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Algorithm 2.3 Intra-member scan (CUDA)
Exclusive scan on val within member vector (called by each thread)

function IntraMemberScan(val)
vector length← blockDim.x
vector lane← threadIdx.x
member id← threadIdx.y
temp← 0
offset← 1
while offset < vector length do . First do inclusive scan

temp← shfl up(val, offset, vector length)
if vector lane ≥ offset then

val← val + temp
offset← offset× 2

val← shfl up(val, 1, vector length) . Make scan exclusive
if vector lane == 0 then

val← 0
return val

Algorithm 2.4 Intra-member reduction (CUDA)
Reduce val to vector lane 0 for each member (called by each thread)

function IntraMemberReduction(join(), val)
vector length← blockDim.x
team size← blockDim.y
lane delta← vector length/2
while lane delta ≥ 1 do

temp← shfl down(val, lane delta, vector length)
val← join(val, temp)
lane delta← lane delta/2

return val . val only defined for vector lane 0

2.2. OpenMP Task Team Collectives. We implement the same collective opera-
tions for OpenMP execution on CPUs. For a reduction each member of a team (one OpenMP
thread) first performs a serial reduction over its subset of the data. We could then perform
a parallel reduction across team members, however since the OpenMP thread teams will
usually have only a few members, it should be faster for just one “team lead” thread to
perform a serial reduction across team members. First each thread places its result into
pre-allocated team shared memory, and then the lead thread performs a serial reduction on
the data in shared memory. When the lead thread finishes, the result is broadcast back to
all team members using the same shared memory.

The OpenMP thread team scan algorithm is similar to the reduction. First, each mem-
ber performs a serial scan on its subset of the data, with all members performing serial scans
simultaneously. Second, each member places its serial scan total in shared memory and the
lead thread performs a serial scan on these totals. Finally, each member re-scans its subset
of the data, this time adding in the running total, which is now stored in shared memory.

The caller passes the scan operation to be performed on each index as a lambda expres-
sion, i.e.,
[&](int i, long &val, bool final){ if(final){result[i] = val;} val
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+= i;},
and can choose an inclusive or exclusive scan by incrementing val before or after storing
it, respectively. The final variable is used to determine whether this is the first (intra-
member) scan pass or the final pass.

2.2.1. Thread Team Synchronization on CPU Architectures. Thread team syn-
chronization is a performance-critical operation used in the team collectives described above.
For example a task’s internal thread team parallel reduce operation synchronizes hard-
ware threads with a team barrier and then joins hardware threads’ individual values into
a team total. We use the barrier algorithm summarized in Figure 2.4 which minimizes the
number of shared variables accessed and minimizes writes to those shared variables.

The variable sync shared is a cache-aligned array of two 64-bit integer values that
is shared by the team. Within each call to team barrier each thread team member
writes exactly one byte within this array to a designated value, and then waits for all team
members to write their respective bytes. The synchronization variable alternates between
calls to team barrier and the synchronization value is flipped every other call.

2.3. Serial Task Team Collectives. We implement the same collectives for task
teams consisting of a single member. These perform the same reduction and scan operations
described above in serial.
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void team_barrier_init() {
sync_shared[0] = 0 ;
sync_shared[1] = 0 ;
for ( int i = 0 ; i < team_size ; ++i ) {
sync_value |= int64_t(1) << (8*i);
sync_mask |= int64_t(3) << (8*i);

}
}
void team_barrier() {
// alternate between two team-shared synchronization
// variables
int64_t volatile * const sync = sync_shared

+ ( sync_step & 0x01 );

// this thread’s portion of team-shared sync. variable
int8_t volatile * const sync_self = ((int8_t volatile*) sync)

+ team_rank;

// Write single byte to signal team that this thread arrived

*sync_self = int8_t( sync_value & 0x03 );

// Spin-wait for whole team to arrive at this statement
while( sync_value != *sync );

// An alternating pattern for the synchronization variable
// and value minimizes writes to the synchronization variable
// and prevents confusion between iterative calls to the
// barrier. If team_size == 4 then:
// step 0: while( sync_shared[0] != 0x0000000001010101 );
// step 1: while( sync_shared[1] != 0x0000000001010101 );
// step 2: while( sync_shared[0] != 0x0000000002020202 );
// step 3: while( sync_shared[1] != 0x0000000002020202 );
// step 4: while( sync_shared[0] != 0x0000000001010101 );
// etc.

++sync_step ; // how many times the barrier has been called

if ( 0 == ( 0x01 & sync_step ) ) { // every other step
sync_value ˆ= sync_mask ; // flip the sync value

}
}

Fig. 2.4: On CPU architectures the hardware thread team of up to eight threads synchronizes
by each thread setting a byte within a shared synchronization variable to a specific value
and then all threads wait for all team members’ values to be set.

3. Conclusions. We have implemented task-team collective operations for the CUDA,
OpenMP, and Serial Kokkos back ends. Task-DAGs with opportunities for intra-task par-
allelism, including the collective operations presented here, arise frequently in the kinds of
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scientific applications Kokkos targets; these capabilities further Kokkos’ goal of providing
platform-independent task-DAG execution for scientific applications.

The next step will be to evaluate the performance of these collective operations in a
typical application. We will use Kokkos’ task teams to perform a Cholesky matrix fac-
torization, in particular comparing performance of the (previous) CUDA block-sized task
teams to the new warp-sized task teams. As stated previously, we expect the warp-sized
task teams to perform better since they should more fully utilize the GPU.
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